CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2169-2185.DOI: 10.11949/0438-1157.20240985
• Separation engineering • Previous Articles Next Articles
Jiashun LI1(
), Wang LI1, Zuzeng QIN1, Tongming SU1, Xinling XIE1(
), Hongbing JI1,2
Received:2024-09-02
Revised:2024-12-10
Online:2025-06-13
Published:2025-05-25
Contact:
Xinling XIE
李家顺1(
), 李旺1, 秦祖赠1, 苏通明1, 谢新玲1(
), 纪红兵1,2
通讯作者:
谢新玲
作者简介:李家顺(2003—),男,本科生,2168351466@qq.com
基金资助:CLC Number:
Jiashun LI, Wang LI, Zuzeng QIN, Tongming SU, Xinling XIE, Hongbing JI. Preparation of polyimide-reinforced lignocellulosic nanofibril aerogel and its oil-water separation performance[J]. CIESC Journal, 2025, 76(5): 2169-2185.
李家顺, 李旺, 秦祖赠, 苏通明, 谢新玲, 纪红兵. 聚酰亚胺增强木质纤维素纳米纤丝气凝胶制备及其油水分离性能研究[J]. 化工学报, 2025, 76(5): 2169-2185.
Add to citation manager EndNote|Ris|BibTeX
| 样品 | VLCNF/ml | VPI/ml | mLCNF:mPI |
|---|---|---|---|
| M-LCNF | 10.00 | 0 | — |
| M-LCNF/PI-0.25 | 9.75 | 0.25 | 39∶1 |
| M-LCNF/PI-0.50 | 9.50 | 0.50 | 38∶2 |
| M-LCNF/PI-0.75 | 9.25 | 0.75 | 37∶3 |
| M-LCNF/PI-1.00 | 9.00 | 1.00 | 36∶4 |
Table 1 Composition of hydrophobic aerogels
| 样品 | VLCNF/ml | VPI/ml | mLCNF:mPI |
|---|---|---|---|
| M-LCNF | 10.00 | 0 | — |
| M-LCNF/PI-0.25 | 9.75 | 0.25 | 39∶1 |
| M-LCNF/PI-0.50 | 9.50 | 0.50 | 38∶2 |
| M-LCNF/PI-0.75 | 9.25 | 0.75 | 37∶3 |
| M-LCNF/PI-1.00 | 9.00 | 1.00 | 36∶4 |
| 样品 | 比表面积/ (m2∙g-1) | 孔体积/ (cm3∙g-1) | 平均孔直径/ nm |
|---|---|---|---|
| LCNF | 2.27 | 0.0091 | 32.49 |
| PI | 7.50 | 0.0335 | 28.61 |
| M-LCNF | 2.89 | 0.0065 | 16.74 |
| M-LCNF/PI-1.00 | 26.29 | 0.0622 | 11.97 |
Table 2 Pore structure parameters of aerogels
| 样品 | 比表面积/ (m2∙g-1) | 孔体积/ (cm3∙g-1) | 平均孔直径/ nm |
|---|---|---|---|
| LCNF | 2.27 | 0.0091 | 32.49 |
| PI | 7.50 | 0.0335 | 28.61 |
| M-LCNF | 2.89 | 0.0065 | 16.74 |
| M-LCNF/PI-1.00 | 26.29 | 0.0622 | 11.97 |
| 样品 | 最大分解速率温度/℃ | 最大分解速率/(%·℃-1) | 残留量/% | 水含量/% |
|---|---|---|---|---|
| M-LCNF | 362.5 | -2.053 | 6.204 | 5.513 |
| M-LCNF/PI-1.00 | 363.1 | -1.970 | 6.590 | 5.644 |
Table 3 Thermal parameters of aerogel
| 样品 | 最大分解速率温度/℃ | 最大分解速率/(%·℃-1) | 残留量/% | 水含量/% |
|---|---|---|---|---|
| M-LCNF | 362.5 | -2.053 | 6.204 | 5.513 |
| M-LCNF/PI-1.00 | 363.1 | -1.970 | 6.590 | 5.644 |
qe,exp/ (g·g-1) | 准一级动力学模型 | 准二级动力学模型 | ||||
|---|---|---|---|---|---|---|
| k1/s-1 | qe,cal/(g·g-1) | k2/(g·g-1∙s-1) | qe,cal/(g·g-1) | |||
| 79.36 | 0.01327 | 119.4 | 0.8406 | 4.637×10-5 | 81.22 | 0.9795 |
Table 4 Kinetic parameters of vacuum pump oils adsorbed by M-LCNF/PI-1.00
qe,exp/ (g·g-1) | 准一级动力学模型 | 准二级动力学模型 | ||||
|---|---|---|---|---|---|---|
| k1/s-1 | qe,cal/(g·g-1) | k2/(g·g-1∙s-1) | qe,cal/(g·g-1) | |||
| 79.36 | 0.01327 | 119.4 | 0.8406 | 4.637×10-5 | 81.22 | 0.9795 |
| 1 | Cherukupally P, Sun W, Williams D R, et al. Wax-wetting sponges for oil droplets recovery from frigid waters[J]. Science Advances, 2021, 7(11): eabc7926. |
| 2 | Tian G D, Duan C, Lu W L, et al. Cellulose acetate-based electrospun nanofiber aerogel with excellent resilience and hydrophobicity for efficient removal of drug residues and oil contaminations from wastewater[J]. Carbohydrate Polymers, 2024, 329: 121794. |
| 3 | Qiao A H, Huang R L, Penkova A, et al. Superhydrophobic, elastic and anisotropic cellulose nanofiber aerogels for highly effective oil/water separation[J]. Separation and Purification Technology, 2022, 295: 121266. |
| 4 | Fan B J, Bao X M, Pan S S, et al. High capillary effect and solar dual-drive nanofibrillated cellulose aerogels for efficient crude oil spill cleanup[J]. Chemical Engineering Journal, 2024, 480: 148149. |
| 5 | Miao Y, Liang Y P, Wang E F, et al. Magnetic superhydrophobic cellulose nanofibril based aerogel with rope-ladder like structure incorporating both superelasticity and excellent oil absorption[J]. Journal of Environmental Management, 2024, 358: 120909. |
| 6 | Xu H, Zhang Z, Jiang W, et al. Multifunctional amphibious superhydrophilic-oleophobic cellulose nanofiber aerogels for oil and water purification[J]. Carbohydrate Polymers, 2024, 330: 121774. |
| 7 | Liu Z S, Sheng Z Z, Bao Y Q, et al. Ionic liquid directed spinning of cellulose aerogel fibers with superb toughness for weaved thermal insulation and transient impact protection[J]. ACS Nano, 2023, 17(18): 18411-18420. |
| 8 | Sivaraman D, Nagel Y, Siqueira G, et al. Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties[J]. Advanced Science, 2024, 11(24): 2307921. |
| 9 | Rafieian F, Hosseini M, Jonoobi M, et al. Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment[J]. Cellulose, 2018, 25(8): 4695-4710. |
| 10 | Zhang M L, Jiang S, Han F Y, et al. Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties[J]. Carbohydrate Polymers, 2021, 264: 118033. |
| 11 | Chen B Y, Hu Y C. Hierarchical aerogels based on cellulose nanofibers and long-chain polymers for enhancing oil-water separation efficiency[J]. Materials Today Nano, 2024, 26: 100469. |
| 12 | Chen X Y, Yang M Y, Cai X D, et al. Fabrication of wheat straw-based lignin containing nanofibril aerogels as recyclable absorbents for oil-water separation[J]. Cellulose, 2024, 31(1): 497-514. |
| 13 | Tang R, Xu S Q, Hu Y, et al. Multifunctional nano-cellulose aerogel for efficient oil-water separation: vital roles of magnetic exfoliated bentonite and polyethyleneimine[J]. Separation and Purification Technology, 2023, 314: 123557. |
| 14 | 李明星, 谢慧红, 李帅, 等. 高疏水型纤维素纳米纤/聚乳酸杂化气凝胶用于高效油水分离[J]. 高分子材料科学与工程, 2022, 38(8): 104-112. |
| Li M X, Xie H H, Li S, et al. Highly hydrophobic cellulose nanofiber/polylactic acid hybrid aerogel for efficient oil-water separation[J]. Polymer Materials Science & Engineering, 2022, 38(8): 104-112. | |
| 15 | Liaw D J, Wang K L, Huang Y C, et al. Advanced polyimide materials: syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37(7): 907-974. |
| 16 | 高端辉, 肖卫强, 高峰, 等. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773. |
| Gao D H, Xiao W Q, Gao F, et al. Preparation and application of polyimide-based aerogels[J]. CIESC Journal, 2022, 73(7): 2757-2773. | |
| 17 | Zheng R N, Hu J Y, Lin Z C, et al. Anisotropic polyimide/cellulose nanofibril composite aerogels for thermal insulation and flame retardancy[J]. ACS Applied Polymer Materials, 2023, 5(6): 4180-4189. |
| 18 | Wu T T, Dong J, Gan F, et al. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups[J]. Applied Surface Science, 2018, 440: 595-605. |
| 19 | 谢新玲, 李旺, 秦祖赠, 等. 一种疏水改性木质纤维素纳米纤丝及其制备方法: 116463873A[P]. 2023-07-21. |
| Xie X X, Li W, Qin Z Z, et al. A hydrophobically modified lignocellulosic nanofibril and its preparation method: 116463873A[P]. 2023-07-21. | |
| 20 | Fan B J, Wu L L, Ming A X, et al. Highly compressible and hydrophobic nanofibrillated cellulose aerogels for cyclic oil/water separation[J]. International Journal of Biological Macromolecules, 2023, 242: 125066. |
| 21 | 刘会娥, 黄扬帆, 马雁冰, 等. 石墨烯基气凝胶对有机物的饱和吸附能力[J]. 化工学报, 2019, 70(1): 280-289. |
| Liu H E, Huang Y F, Ma Y B, et al. Saturated adsorption capacities of graphene aerogels on organics[J]. CIESC Journal, 2019, 70(1): 280-289. | |
| 22 | Chen W W, Zhou X M, Wan M M, et al. Recent progress on polyimide aerogels against shrinkage: a review[J]. Journal of Materials Science, 2022, 57(28): 13233-13263. |
| 23 | Tang R, Hu Y, Yan J Y, et al. Multifunctional carboxylated cellulose nanofibers/exfoliated bentonite/Ti3C2 aerogel for efficient oil adsorption and recovery: the dual effect of exfoliated bentonite and MXene[J]. Chemical Engineering Journal, 2023, 473: 145412. |
| 24 | Vimonses V, Lei S M, Jin B, et al. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials[J]. Chemical Engineering Journal, 2009, 148(2/3): 354-364. |
| 25 | Liu Y X, Wei H X, Liu Z W, et al. Ultrafast and energy-saving extraction of cellulose nanocrystals[J]. Green Chemistry, 2022, 24(18): 6823-6829. |
| 26 | Ji H, Xiang Z Y, Qi H S, et al. Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid[J]. Green Chemistry, 2019, 21(8): 1956-1964. |
| 27 | Wang N N, Wang H, Wang Y Y, et al. Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40512-40523. |
| 28 | Wang Y M, Zeng X Y, Wang W, et al. Superhydrophobic polyimide/cattail-derived active carbon composite aerogels for effective oil/water separation[J]. Separation and Purification Technology, 2023, 308: 122994. |
| 29 | Luo B, Cai C C, Liu T, et al. Multiscale structural nanocellulosic triboelectric aerogels induced by hofmeister effect[J]. Advanced Functional Materials, 2023, 33(42): 2306810. |
| 30 | Zhu P H, Yu Z Y, Sun H, et al. 3D printed cellulose nanofiber aerogel scaffold with hierarchical porous structures for fast solar-driven atmospheric water harvesting[J]. Advanced Materials, 2024, 36(1): 2306653. |
| 31 | Yang X, Jiang P J, Xiao R, et al. Elastic agarose nanowire aerogels for oil-water separation and thermal insulation[J]. ACS Applied Nano Materials, 2022, 5(9): 12423-12434. |
| 32 | Li Y Z, Grishkewich N, Liu L L, et al. Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils[J]. Chemical Engineering Journal, 2019, 366: 531-538. |
| 33 | Wang Y X, He T J, Liu M Y, et al. Fast and efficient oil-water separation under harsh conditions of the flexible polyimide aerogel containing benzimidazole structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581: 123809. |
| 34 | Liao Y R, Zhang S Z, Yu S, et al. Microstructural evolution of bio-based chitosan aerogels for thermal insulator with superior moisture/fatigue resistance and anti-thermal-shock[J]. International Journal of Biological Macromolecules, 2024, 278: 134681. |
| 35 | Apostolopoulou-Kalkavoura V, Munier P, Bergström L. Thermally insulating nanocellulose-based materials[J]. Advanced Materials, 2021, 33(28): 2001839. |
| 36 | Li C J, Guo J X, Xu P K, et al. Facile preparation of superior compressibility and hydrophobic reduced graphene oxide@cellulose nanocrystals/EPDM composites for highly efficient oil/organic solvent adsorption and enhanced electromagnetic interference shielding[J]. Separation and Purification Technology, 2023, 307: 122775. |
| 37 | Sankhla S, Neogi S. Ambient-dried, scalable and biodegradable cellulose nanofibers aerogel for oil-spill cleanup[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 112745. |
| 38 | Lyu P, Xia L J, Liu X, et al. Self-cleaning superhydrophobic aerogels from waste hemp noil for ultrafast oil absorption and highly efficient PM removal[J]. Separation and Purification Technology, 2023, 306: 122503. |
| 39 | Mei J F, Ding Z L, Sun X Y, et al. A solvent-template ethyl cellulose-polydimethylsiloxane crosslinking sponge for rapid and efficient oil adsorption[J]. International Journal of Biological Macromolecules, 2023, 244: 125399. |
| 40 | Peng D, Zhao J, Liang X J, et al. Corn stalk pith-based hydrophobic aerogel for efficient oil sorption[J]. Journal of Hazardous Materials, 2023, 448: 130954. |
| 41 | Hou Y S, Liao J M, Li L, et al. A novel eco-friendly lightweight cellulose-based foam with superior resilience and hydrophobicity for selective oil/water separation[J]. Cellulose, 2024, 31(7): 4409-4420. |
| 42 | Huang B J, Jiang J C. Construction of super-hydrophobic lignocellulosic nanofibrils aerogels as speedy oil absorbents[J]. Applied Biochemistry and Biotechnology, 2024, 196(1): 220-232. |
| 43 | Guan Y H, Qiao D, Dong L M, et al. Efficient recovery of highly viscous crude oil spill by superhydrophobic ocean biomass-based aerogel assisted with solar energy[J]. Chemical Engineering Journal, 2023, 467: 143532. |
| 44 | Feng J D, Nguyen S T, Fan Z, et al. Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels[J]. Chemical Engineering Journal, 2015, 270: 168-175. |
| 45 | Dilamian M, Noroozi B. Rice straw agri-waste for water pollutant adsorption: relevant mesoporous super hydrophobic cellulose aerogel[J]. Carbohydrate Polymers, 2021, 251: 117016. |
| [1] | Jialang HU, Mingyuan JIANG, Lyuming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research [J]. CIESC Journal, 2025, 76(5): 1973-1996. |
| [2] | Dong GU, Xingjian PI, Die ZHANG, Ying ZHANG. Construction and H2/CO2 separation performance evaluation of CAU-1/PI mixed matrix membrane with different nanoparticle sizes [J]. CIESC Journal, 2025, 76(5): 2410-2418. |
| [3] | Jinyue WANG, Enze XIE, Hanze MA, Sheng YUAN, Guangwei HE, Zhongyi JIANG. Monoatomic layer separation membrane: progress and prospect [J]. CIESC Journal, 2025, 76(5): 1943-1959. |
| [4] | Yanqiu LU, Yang DI, Wenbo SHI, Congcong YIN, Yong WANG. Research progress of smart responsive membranes based on novel porous organic polymers [J]. CIESC Journal, 2025, 76(5): 2101-2118. |
| [5] | Chunhui TAO, Yinhui LI, Yu FU, Ran DUAN, Zeyi ZHAO, Yufeng TANG, Gang ZHANG, Heping MA. Selective adsorption and purification of low-concentration Kr gas using various adsorbents [J]. CIESC Journal, 2025, 76(5): 2358-2366. |
| [6] | Haofan ZHAO, Haojie REN, Zongkai LIU, Guanying DONG, Yatao ZHANG. Research progress of MOFs glass membranes in gas separation applications [J]. CIESC Journal, 2025, 76(5): 2042-2054. |
| [7] | Yue ZHANG, Jiaxin LIU, Jing MA, Yi LIU. Recent progress on metal-organic framework membranes towards uranium separation from seawater [J]. CIESC Journal, 2025, 76(5): 2087-2100. |
| [8] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [9] | Renze SHI, Qiuyan DING, Zhenjun YUAN, Jian NA, Jianhua LIU, Shuhu GUO, Xiong ZHAO, Hong LI, Xin GAO. Study on the purification technology of 4N electronic-grade diethoxymethylsilane [J]. CIESC Journal, 2025, 76(5): 2186-2197. |
| [10] | Liao HE, Jun LI, Mengshu GAO, Dongyang LIU, Yuhao ZHANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on aromatic hydrocarbons separation from petroleum hydrocarbons [J]. CIESC Journal, 2025, 76(5): 1909-1926. |
| [11] | Zehai XU, Chao LIU, Guoliang ZHANG. Hydrophobic pervaporation membranes on polymer substrate for solvent recovery [J]. CIESC Journal, 2025, 76(5): 2055-2069. |
| [12] | Bingbing GAO, Nuo XU, Yunxiang BAI, Chunfang ZHANG, Yongqiang YANG, Liangliang DONG. Polymeric membranes for helium separation [J]. CIESC Journal, 2025, 76(5): 2119-2135. |
| [13] | Yaohui ZHANG, Yujie BAN, Weishen YANG. Vapor-phase synthesis and post-synthetic modification of metal-organic framework membranes [J]. CIESC Journal, 2025, 76(5): 2070-2086. |
| [14] | Yanan YANG, Shengran CHANG, Songlin XUE, Jianming PAN, Weihong XING. Progress of research on photo- and electric-driven to promote uranium and lithium extraction from seawater [J]. CIESC Journal, 2025, 76(5): 1927-1942. |
| [15] | Zibo YANG, Youfa WANG, Hansong YUE, Shuangjie YUAN, Fujiang GENG, Qingqing LI, De AO, Bin LI, Mao YE, Zhenjie GU, Zhihua QIAO. Recent progress of MOF glasses based gas separation membrane [J]. CIESC Journal, 2025, 76(5): 2158-2168. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||