CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2158-2168.DOI: 10.11949/0438-1157.20241180
• Reviews and monographs • Previous Articles Next Articles
Zibo YANG1(
), Youfa WANG2, Hansong YUE2, Shuangjie YUAN3, Fujiang GENG1(
), Qingqing LI1, De AO4, Bin LI1, Mao YE4, Zhenjie GU4, Zhihua QIAO4(
)
Received:2024-10-24
Revised:2024-12-16
Online:2025-06-13
Published:2025-05-25
Contact:
Fujiang GENG, Zhihua QIAO
杨紫博1(
), 王有发2, 岳寒松2, 远双杰3, 耿付江1(
), 李晴晴1, 奥德4, 李斌1, 叶茂4, 顾振杰4, 乔志华4(
)
通讯作者:
耿付江,乔志华
作者简介:杨紫博(1991—),男,博士,教授,yangzibo0125@163.com
基金资助:CLC Number:
Zibo YANG, Youfa WANG, Hansong YUE, Shuangjie YUAN, Fujiang GENG, Qingqing LI, De AO, Bin LI, Mao YE, Zhenjie GU, Zhihua QIAO. Recent progress of MOF glasses based gas separation membrane[J]. CIESC Journal, 2025, 76(5): 2158-2168.
杨紫博, 王有发, 岳寒松, 远双杰, 耿付江, 李晴晴, 奥德, 李斌, 叶茂, 顾振杰, 乔志华. MOF玻璃基气体分离膜的研究进展[J]. 化工学报, 2025, 76(5): 2158-2168.
Add to citation manager EndNote|Ris|BibTeX
Fig.6 (a) Schematic diagram of preparation process of ZIF-62 glass foam membrane; (b) Separation performance of ZIF-62 glass foam membrane and (c) performance comparison[62]
Fig.8 ag[ZIF-62/ZIF-8] mixed matrix membrane: (a) preparation process; (b) dynamic adsorption test; (c) transport model of C2H6 molecule across the membrane; (d) mixed gas C2H6 permeance and C2H6/C2H4 selectivity; (e) pure gas C2H6 permeance and C2H6/C2H4 selectivity[65]
Fig.9 MIL-53/ZIF-62 glass composite material: (a) formation process of composite material; (b) schematic diagram of ZIF-62 glass fixing effect on MIL-53 crystal aperture; (c) X-ray diffraction pattern of MIL-53/ZIF-62 glass composite material; (d) CO2 adsorption isotherms of MIL-53/ZIF-62 glass composite material[66-67]
| 类别 | 膜名称 | 分离体系 | 通量 | 选择性 | 文献 |
|---|---|---|---|---|---|
| 纯MOF玻璃膜 | agfZIF-62 | CH4/N2 | 37000 GPU | 5.12 | [ |
| agTIF-4 | CO2/N2 | 3×10-9mol/(m2·s·Pa) | 27 | [ | |
| agZIF-62 | H2/CH4 | 70 GPU | 59 | [ | |
| 共混MOF玻璃膜 | ag[ZIF-62/ZIF-8] | C2H6/C2H4 | 41569 GPU | 7.16 | [ |
| ag[ZIF-62/ZIF-7] | H2/CH4 | 120.3 GPU | 98.6 | [ | |
| 晶体-MOF玻璃膜 | (agZIF-62)1-x (4A) x | CO2/CH4 | 33.3 GPU | 31.7 | [ |
| (agZIF-62)1-x (SSZ-13) x (agZIF-62)1-x (SSZ-13) x | 1,3-C4H6/i-C4H10 1,3-C4H6/i-C4H10 | 693.00 GPU 537.37 GPU | 11.94 8.98 | [ | |
| MIL-101/agZn-P-dmbIm | CO2/N2 | 68.5 GPU | 61 | [ |
Table 1 Classification of MOF glass based gas separation membranes
| 类别 | 膜名称 | 分离体系 | 通量 | 选择性 | 文献 |
|---|---|---|---|---|---|
| 纯MOF玻璃膜 | agfZIF-62 | CH4/N2 | 37000 GPU | 5.12 | [ |
| agTIF-4 | CO2/N2 | 3×10-9mol/(m2·s·Pa) | 27 | [ | |
| agZIF-62 | H2/CH4 | 70 GPU | 59 | [ | |
| 共混MOF玻璃膜 | ag[ZIF-62/ZIF-8] | C2H6/C2H4 | 41569 GPU | 7.16 | [ |
| ag[ZIF-62/ZIF-7] | H2/CH4 | 120.3 GPU | 98.6 | [ | |
| 晶体-MOF玻璃膜 | (agZIF-62)1-x (4A) x | CO2/CH4 | 33.3 GPU | 31.7 | [ |
| (agZIF-62)1-x (SSZ-13) x (agZIF-62)1-x (SSZ-13) x | 1,3-C4H6/i-C4H10 1,3-C4H6/i-C4H10 | 693.00 GPU 537.37 GPU | 11.94 8.98 | [ | |
| MIL-101/agZn-P-dmbIm | CO2/N2 | 68.5 GPU | 61 | [ |
| 1 | Jia S Y, Ji D X, Wang L M, et al. Metal-organic framework membranes: advances, fabrication, and applications[J]. Small Structures, 2022, 3(4): 2100222. |
| 2 | Yang L Z, Yan D L, Wang D Y, et al. Adsorption site selective occupation strategy within a metal-organic framework for highly efficient sieving acetylene from carbon dioxide[J]. Angewandte Chemie International Edition, 2021, 60(9): 4570-4574. |
| 3 | Guo Z J, Liu Z Y, Zhang K, et al. Stable metal-organic frameworks based mixed matrix membranes for ethylbenzene/N2 separation[J]. Chemical Engineering Journal, 2021, 416: 129193. |
| 4 | Liu X P, Zhang L, Cui X W, et al. 2D material nanofiltration membranes: from fundamental understandings to rational design[J]. Advanced Science, 2021, 8(23): 2102493. |
| 5 | Cao Y H, Zhang K, Zhang C, et al. Carbon molecular sieve hollow fiber membranes derived from dip-coated precursor hollow fibers comprising nanoparticles[J]. Journal of Membrane Science, 2022, 649: 120279. |
| 6 | Gu Z J, Yang Z B, Sun Y X, et al. Large-area vacuum-treated ZIF-8 mixed-matrix membrane for highly efficient methane/nitrogen separation[J]. AIChE Journal, 2022, 68(9): e17749. |
| 7 | Goh S H, Lau H S, Yong W F. Metal-organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications[J]. Small, 2022, 18(20): 2107536. |
| 8 | Jia X M, Ao D, Yang Z B, et al. Condensability sieving porous coordination polymer membranes for preferential permeation of C1—C4 alkanes over H2 [J]. Advanced Membranes, 2022, 2: 100044. |
| 9 | Marshall C R, Dvorak J P, Twight L P, et al. Size-dependent properties of solution-processable conductive MOF nanocrystals[J]. Journal of the American Chemical Society, 2022, 144(13): 5784-5794. |
| 10 | Liu P, Zhao T X, Cai K X, et al. Rapid mechanochemical construction of HKUST-1 with enhancing water stability by hybrid ligands assembly strategy for efficient adsorption of SF6 [J]. Chemical Engineering Journal, 2022, 437: 135364. |
| 11 | Yu C J, Liang Y Y, Xue W J, et al. Polymer-supported ultra-thin ZIF-67 membrane through in situ interface self-repair[J]. Journal of Membrane Science, 2021, 625: 119139. |
| 12 | Li Y C, Su J, Zhao Y, et al. Dynamic bond-directed synthesis of stable mesoporous metal-organic frameworks under room temperature[J]. Journal of the American Chemical Society, 2023, 145(18): 10227-10235. |
| 13 | Yang Z B, Ao D, Guo X Y, et al. Preparation and characterization of small-size amorphous MOF mixed matrix membrane[J]. Separation and Purification Technology, 2021, 272: 118860. |
| 14 | Yang Z B, Li D D, Ao D, et al. Self-supported membranes fabricated by a polymer-hydrogen bonded network with a rigidified MOF framework[J]. Journal of Membrane Science, 2022, 650: 120427. |
| 15 | Wang Z Y, Qi J Y, Lu X H, et al. Epitaxially grown MOF membranes with photocatalytic bactericidal activity for biofouling mitigation in desalination[J]. Journal of Membrane Science, 2021, 630: 119327. |
| 16 | Wang H, Liu Y L, Li J. Designer metal-organic frameworks for size-exclusion-based hydrocarbon separations: progress and challenges[J]. Advanced Materials, 2020, 32(44): 2002603. |
| 17 | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
| 18 | Jun B M, Al-Hamadani Y A J, Son A, et al. Applications of metal-organic framework based membranes in water purification: a review[J]. Separation and Purification Technology, 2020, 247: 116947. |
| 19 | Shi D C, Yu X, Fan W D, et al. Polycrystalline zeolite and metal-organic framework membranes for molecular separations[J]. Coordination Chemistry Reviews, 2021, 437: 213794. |
| 20 | Wang Z G, Yuan J W, Li R H, et al. ZIF-301 MOF/6FDA-DAM polyimide mixed-matrix membranes for CO2/CH4 separation[J]. Separation and Purification Technology, 2021, 264: 118431. |
| 21 | Gu Z J, Yang Z B, Guo X Y, et al. Vacuum resistance treated ZIF-8 mixed matrix membrane for effective CH4/N2 separation[J]. Separation and Purification Technology, 2021, 272: 118845. |
| 22 | Gandara-Loe J, Bueno-Perez R, Missyul A, et al. Molecular sieving properties of nanoporous mixed-linker ZIF-62: associated structural changes upon gas adsorption application[J]. ACS Applied Nano Materials, 2021, 4(4): 3519-3528. |
| 23 | Bennett T D, Keen P D A, Tan D J, et al. Thermal amorphization of zeolitic imidazolate frameworks[J]. Angewandte Chemie, 2011, 123(13): 3123-3127. |
| 24 | Bennett T D, Tan J C, Yue Y Z, et al. Hybrid glasses from strong and fragile metal-organic framework liquids[J]. Nature Communications, 2015, 6: 8079. |
| 25 | Bennett T D, Yue Y Z, Li P, et al. Melt-quenched glasses of metal-organic frameworks[J]. Journal of the American Chemical Society, 2016, 138(10): 3484-3492. |
| 26 | Zhou C, Longley L, Krajnc A, et al. Metal-organic framework glasses with permanent accessible porosity[J]. Nature Communications, 2018, 9(1): 5042. |
| 27 | Yin Z, Zhang Y B, Yu H B, et al. How to create MOF glasses and take advantage of emerging opportunities[J]. Science Bulletin, 2020, 65(17): 1432-1435. |
| 28 | León-Alcaide L, Christensen R S, Keen D A, et al. Meltable, glass-forming, iron zeolitic imidazolate frameworks[J]. Journal of the American Chemical Society, 2023, 145(20): 11258-11264. |
| 29 | Kim M, Lee H S, Seo D H, et al. Melt-quenched carboxylate metal-organic framework glasses[J]. Nature Communications, 2024, 15(1): 1174. |
| 30 | Lin R J, Chai M, Zhou Y H, et al. Metal-organic framework glass composites[J]. Chemical Society Reviews, 2023, 52(13): 4149-4172. |
| 31 | Horike P S, Nagarkar D S S, Ogawa D T, et al. A new dimension for coordination polymers and metal-organic frameworks: towards functional glasses and liquids[J]. Angewandte Chemie International Edition, 2020, 59(17): 6652-6664. |
| 32 | Li S C, Limbach R, Longley L, et al. Mechanical properties and processing techniques of bulk metal-organic framework glasses[J]. Journal of the American Chemical Society, 2019, 141(2): 1027-1034. |
| 33 | Frentzel-Beyme L, Kloß M, Kolodzeiski P, et al. Meltable mixed-linker zeolitic imidazolate frameworks and their microporous glasses: from melting point engineering to selective hydrocarbon sorption[J]. Journal of the American Chemical Society, 2019, 141(31): 12362-12371. |
| 34 | Mubashir M, Dumée L F, Fong Y Y, et al. Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation[J]. Journal of Hazardous Materials, 2021, 415: 125639. |
| 35 | Qiao A, Bennett T D, Tao H Z, et al. A metal-organic framework with ultrahigh glass-forming ability[J]. Science Advances, 2018, 4(3): eaao6827. |
| 36 | Nagarkar S S, Tsujimoto M, Kitagawa S, et al. Modular self-assembly and dynamics in coordination star polymer glasses: new media for ion transport[J]. Chemistry of Materials, 2018, 30(23): 8555-8561. |
| 37 | Widmer R N, Lampronti G I, Anzellini S, et al. Pressure promoted low-temperature melting of metal-organic frameworks[J]. Nature Materials, 2019, 18(4): 370-376. |
| 38 | Bumstead A M, Ríos Gómez M L, Thorne M F, et al. Investigating the melting behaviour of polymorphic zeolitic imidazolate frameworks[J]. CrystEngComm, 2020, 22(21): 3627-3637. |
| 39 | Das C, Horike S. Crystal melting and vitrification behaviors of a three-dimensional nitrile-based metal-organic framework[J]. Faraday Discussions, 2021, 225: 403-413. |
| 40 | McHugh L N, Thorne M F, Chester A M, et al. Mechanochemically synthesised dicyanamide hybrid organic-inorganic perovskites, and their melt-quenched glasses[J]. Chemical Communications, 2022, 58(24): 3949-3952. |
| 41 | Shaw B K, Castillo-Blas C, Thorne M F, et al. Principles of melting in hybrid organic-inorganic perovskite and polymorphic ABX3 structures[J]. Chemical Science, 2022, 13(7): 2033-2042. |
| 42 | Zhao Y B, Lee S Y, Becknell N, et al. Nanoporous transparent MOF glasses with accessible internal surface[J]. Journal of the American Chemical Society, 2016, 138(34): 10818-10821. |
| 43 | Zhang Y M, Huang L P, Shi Y F. Molecular dynamics study on the viscosity of glass-forming systems near and below the glass transition temperature[J]. Journal of the American Ceramic Society, 2021, 104(12): 6227-6241. |
| 44 | Collins S M, Kepaptsoglou D M, Butler K T, et al. Subwavelength spatially resolved coordination chemistry of metal-organic framework glass blends[J]. Journal of the American Chemical Society, 2018, 140(51): 17862-17866. |
| 45 | Bennett T D, Horike S. Liquid, glass and amorphous solid states of coordination polymers and metal-organic frameworks[J]. Nature Reviews Materials, 2018, 3(11): 431-440. |
| 46 | Tao H Z, Bennett T D, Yue Y Z. Melt-quenched hybrid glasses from metal-organic frameworks[J]. Advanced Materials, 2017, 29(20): 1601705. |
| 47 | Xu W, Hanikel N, Lomachenko K A, et al. High-porosity metal-organic framework glasses[J]. Angewandte Chemie International Edition, 2023, 62(16): e202300003. |
| 48 | Ogawa T, Takahashi K, Nagarkar S S, et al. Coordination polymer glass from a protic ionic liquid: proton conductivity and mechanical properties as an electrolyte[J]. Chemical Science, 2020, 11(20): 5175-5181. |
| 49 | Longley L, Calahoo C, Southern T J F, et al. The reactivity of an inorganic glass melt with ZIF-8[J]. Dalton Transactions, 2021, 50(10): 3529-3535. |
| 50 | Stepniewska M, Martin B Ø, Zhou C, et al. Towards large-size bulk ZIF-62 glasses via optimizing the melting conditions[J]. Journal of Non-Crystalline Solids, 2020, 530: 119806. |
| 51 | Hou J W, Gómez M L R, Krajnc A, et al. Halogenated metal-organic framework glasses and liquids[J]. Journal of the American Chemical Society, 2020, 142(8): 3880-3890. |
| 52 | Ma N, Horike S. Metal-organic network-forming glasses[J]. Chemical Reviews, 2022, 122(3): 4163-4203. |
| 53 | Nagarkar S S, Kurasho H, Duong N T, et al. Crystal melting and glass formation in copper thiocyanate based coordination polymers[J]. Chemical Communications, 2019, 55(38): 5455-5458. |
| 54 | Wei Y S, Fan Z Y, Luo C, et al. Desolvation of metal complexes to construct metal-organic framework glasses[J]. Nature Synthesis, 2024, 3: 214-223. |
| 55 | Yu Y, Qiao A, Bumstead A M, et al. Impact of 1-methylimidazole on crystal formation, phase transitions, and glass formation in a zeolitic imidazolate framework[J]. Crystal Growth & Design, 2020, 20: 6528-6534. |
| 56 | Yin Z, Zhao Y B, Wan S, et al. Synergistic stimulation of metal-organic frameworks for stable super-cooled liquid and quenched glass[J]. Journal of the American Chemical Society, 2022, 144(29): 13021-13025. |
| 57 | Nozari V, Smirnova O, Tuffnell J M, et al. Low-temperature melting and glass formation of the zeolitic imidazolate frameworks ZIF-62 and ZIF-76 through ionic liquid incorporation[J]. Advanced Materials Technologies, 2022, 7(11): 2200343. |
| 58 | Ma C, Yang Z B, Guo X Y, et al. Size-reduced low-crystallinity ZIF-62 for the preparation of mixed-matrix membranes for CH4/N2 separation[J]. Journal of Membrane Science, 2022, 663: 121069. |
| 59 | Umeyama D, Horike S, Inukai M, et al. Inherent proton conduction in a 2D coordination framework[J]. Journal of the American Chemical Society, 2012, 134(30): 12780-12785. |
| 60 | Wang Y H, Jin D H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angewandte Chemie International Edition, 2020, 59(11): 4365-4369. |
| 61 | Li J, Wang J M, Li Q Q, et al. Coordination polymer glasses with lava and healing ability for high-performance gas sieving[J]. Angewandte Chemie International Edition, 2021, 60(39): 21304-21309. |
| 62 | Yang Z B, Belmabkhout Y, McHugh L N, et al. ZIF-62 glass foam self-supported membranes to address CH4/N2 separations[J]. Nature Materials, 2023, 22: 888-894. |
| 63 | Longley L, Collins S M, Zhou C, et al. Liquid phase blending of metal-organic frameworks[J]. Nature Communications, 2018, 9(1): 2135. |
| 64 | Longley L, Calahoo C, Limbach R, et al. Metal-organic framework and inorganic glass composites[J]. Nature Communications, 2020, 11(1): 5800. |
| 65 | Ao D, Yang Z B, Qiao Z H, et al. Metal-organic framework crystal-glass composite membranes with preferential permeation of ethane[J]. Angewandte Chemie International Edition, 2023, 62(28): e202304535. |
| 66 | Hou J W, Ashling C W, Collins S M, et al. Metal-organic framework crystal-glass composites[J]. Nature Communications, 2019, 10(1): 2580. |
| 67 | Ashling C W, Johnstone D N, Widmer R N, et al. Synthesis and properties of a compositional series of MIL-53(Al) metal-organic framework crystal-glass composites[J]. Journal of the American Chemical Society, 2019, 141(39): 15641-15648. |
| 68 | Ashling C W, Macreadie L K, Southern T J F, et al. Guest size limitation in metal-organic framework crystal-glass composites[J]. Journal of Materials Chemistry A, 2021, 9(13): 8386-8393. |
| 69 | Longley L, Collins S M, Li S C, et al. Flux melting of metal-organic frameworks[J]. Chemical Science, 2019, 10(12): 3592-3601. |
| 70 | Li S C, Yu S W, Collins S M, et al. A new route to porous metal-organic framework crystal-glass composites[J]. Chemical Science, 2020, 11(36): 9910-9918. |
| 71 | McHugh L N, Thorne M F, Robertson G, et al. Properties of single-component metal-organic framework crystal-glass composites[J]. Chemistry-A European Journal, 2022, 28(7): e202104026. |
| 72 | Nozari V, Calahoo C, Tuffnell J M, et al. Ionic liquid facilitated melting of the metal-organic framework ZIF-8[J]. Nature Communications, 2021, 12(1): 5703. |
| 73 | Ao D, Yang Z B, Chen A B, et al. Effective C4 separation by zeolite metal-organic framework composite membranes[J]. Angewandte Chemie International Edition, 2024, 63(21): e202401118. |
| 74 | Li N, Ma C, Wang Z Y, et al. Highly porous MOF integrated with coordination polymer glass membrane for efficient CO2/N2 separation[J]. Journal of Membrane Science, 2025, 715: 123453. |
| 75 | Xia H N, Jin H, Zhang Y T, et al. A long-lasting TIF-4 MOF glass membrane for selective CO2 separation[J]. Journal of Membrane Science, 2022, 655: 120611. |
| 76 | 叶茂, 奥德, 孙玉绣, 等. 新型自支撑ZIF玻璃膜的制备及气体分离性能[J]. 硅酸盐学报, 2024, 52(8): 2545-2552. |
| Ye M, Ao D, Sun Y X, et al. Preparation and performance of a novel self-supported ZIF glass membrane for gas separation[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2545-2552. | |
| 77 | Li D D, Yang Z B, Yang L X, et al. Self-supported flux melted glass membranes fabricated by melt quenching for gas separation[J]. Journal of Membrane Science, 2024, 695: 122492. |
| 78 | Li D D, Ye M, Ma C, et al. Preparation of a self-supported zeolite glass composite membrane for CO2/CH4 separation[J]. Smart Molecules, 2024, 2(3): e20240009. |
| [1] | Dong GU, Xingjian PI, Die ZHANG, Ying ZHANG. Construction and H2/CO2 separation performance evaluation of CAU-1/PI mixed matrix membrane with different nanoparticle sizes [J]. CIESC Journal, 2025, 76(5): 2410-2418. |
| [2] | Dandong NING, Jianhui LI, Yang CHEN, Jinping LI, Libo LI. Study on flocculation techniques in the large-scale production of MIL-101(Cr) [J]. CIESC Journal, 2025, 76(5): 2327-2336. |
| [3] | Haotian AN, Zhangye HAN, Muyao LU, Awu ZHOU, Jianrong LI. Promoting industrial application of MOF: scale-up preparation and shaping [J]. CIESC Journal, 2025, 76(5): 2011-2025. |
| [4] | Yaohui ZHANG, Yujie BAN, Weishen YANG. Vapor-phase synthesis and post-synthetic modification of metal-organic framework membranes [J]. CIESC Journal, 2025, 76(5): 2070-2086. |
| [5] | Yinjie ZHOU, Sibei JI, Songyang HE, Xu JI, Ge HE. Machine learning-assisted high-throughput screening approach for CO2 separation from CO2-rich natural gas using metal-organic frameworks [J]. CIESC Journal, 2025, 76(3): 1093-1101. |
| [6] | Yanhui DAI, Qizhao XIONG, Qiang FANG, Dongxiao YANG, Yi WANG, Yang CHEN, Jinping LI, Libo LI. In situ steam-assisted method for one-step synthesis of hierarchically porous Cu-BTC [J]. CIESC Journal, 2024, 75(9): 3329-3337. |
| [7] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
| [8] | Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors [J]. CIESC Journal, 2022, 73(7): 3287-3297. |
| [9] | Heng MAO, Yue WANG, Sen WANG, Weimin LIU, Jing LYU, Fuxue CHEN, Zhiping ZHAO. APTES-modified ZIF-L/PEBA mixed matrix membranes for enhancing phenol perm-selective pervaporation [J]. CIESC Journal, 2022, 73(3): 1389-1402. |
| [10] | Chenxu GENG, Yuxiu SUN, Hongliang HUANG, Xiangyu GUO, Zhihua QIAO, Chongli ZHONG. Mechanochemically synthesized small sized MOF fillers assisted for highly efficient CO2 separation [J]. CIESC Journal, 2021, 72(9): 4750-4758. |
| [11] | WANG Jiexiang, LI Hongguo, YE Songshou, ZHENG Jinbao, CHEN Binghui. Halogen-rich zinc-adeninate framework construction and its catalytic performance on CO2 cycloaddition without cocatalyst [J]. CIESC Journal, 2021, 72(7): 3686-3695. |
| [12] | HAN Xiao,CHEN Yuting,SU Baogen,BAO Zongbi,ZHANG Zhiguo,YANG Yiwen,REN Qilong,YANG Qiwei. Advances in adsorbents for hexane isomers separation [J]. CIESC Journal, 2021, 72(7): 3445-3465. |
| [13] | CHEN Rundao, ZHENG Fang, GUO Lidong, YANG Qiwei, ZHANG Zhiguo, YANG Yiwen, REN Qilong, BAO Zongbi. Advancements in adsorption separation of Xe/Kr noble gases [J]. CIESC Journal, 2021, 72(1): 14-26. |
| [14] | Puxu LIU, Chaohui HE, Libo LI, Jinping LI. Stable mixed metal-organic framework for efficient C2H6/C2H4 separation [J]. CIESC Journal, 2020, 71(9): 4211-4218. |
| [15] | Tong YANG, Xiaobo HE, Fengxiang YIN. Preparation of M-MOF-74 (M = Ni, Co, Zn) and its performance in electrocatalytic synthesis of ammonia [J]. CIESC Journal, 2020, 71(6): 2857-2870. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||