CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3339-3349.DOI: 10.11949/0438-1157.20241533
• Separation engineering • Previous Articles Next Articles
Yufeng TANG(
), Chunhui TAO, Yongzheng WANG, Yinhui LI, Ran DUAN, Zeyi ZHAO, Heping MA(
)
Received:2024-12-31
Revised:2025-01-23
Online:2025-08-13
Published:2025-07-25
Contact:
Heping MA
唐羽丰(
), 陶春珲, 王永正, 李印辉, 段然, 赵泽一, 马和平(
)
通讯作者:
马和平
作者简介:唐羽丰(1998—),男,硕士研究生,3122316012@stu.xjtu.edu.cn
基金资助:CLC Number:
Yufeng TANG, Chunhui TAO, Yongzheng WANG, Yinhui LI, Ran DUAN, Zeyi ZHAO, Heping MA. Preparation of carbon based porous adsorbent with ultra high specific surface area and its Kr gas storage performance[J]. CIESC Journal, 2025, 76(7): 3339-3349.
唐羽丰, 陶春珲, 王永正, 李印辉, 段然, 赵泽一, 马和平. 超高比表面积碳基多孔吸附剂制备及其Kr气存储性能研究[J]. 化工学报, 2025, 76(7): 3339-3349.
Add to citation manager EndNote|Ris|BibTeX
| 样品 | 元素含量/% | |||
|---|---|---|---|---|
| N | C | H | O | |
| PAF-1 | 0.39 | 92.01 | 5.54 | 2.284 |
| HCP-2 | 0.17 | 87.04 | 6.55 | 2.860 |
| XJTU-C | 0.43 | 97.21 | 0.66 | 1.050 |
Table 1 Elemental analysis data of sample
| 样品 | 元素含量/% | |||
|---|---|---|---|---|
| N | C | H | O | |
| PAF-1 | 0.39 | 92.01 | 5.54 | 2.284 |
| HCP-2 | 0.17 | 87.04 | 6.55 | 2.860 |
| XJTU-C | 0.43 | 97.21 | 0.66 | 1.050 |
| 材料 | 吸附类型 | 0℃吸附量/ (mg/g) | 25℃吸附量/(mg/g) | 40℃吸附量/(mg/g) |
|---|---|---|---|---|
| PAF-1 | 过剩吸附 | 970 | 914 | 857 |
| 绝对吸附 | 1270 | 1140 | 1056 | |
| HCP-2 | 过剩吸附 | 550 | 477 | 380 |
| 绝对吸附 | 733 | 621 | 483 | |
| XJTU-C | 过剩吸附 | 885 | 738 | 634 |
| 绝对吸附 | 1179 | 1032 | 805 |
Table 2 Mass adsorption capacity of PAF-1, HCP-2 and XJTU-C
| 材料 | 吸附类型 | 0℃吸附量/ (mg/g) | 25℃吸附量/(mg/g) | 40℃吸附量/(mg/g) |
|---|---|---|---|---|
| PAF-1 | 过剩吸附 | 970 | 914 | 857 |
| 绝对吸附 | 1270 | 1140 | 1056 | |
| HCP-2 | 过剩吸附 | 550 | 477 | 380 |
| 绝对吸附 | 733 | 621 | 483 | |
| XJTU-C | 过剩吸附 | 885 | 738 | 634 |
| 绝对吸附 | 1179 | 1032 | 805 |
| 材料 | 密度/ (g/cm3) | 吸附类型 | 0℃吸附量/(mg/cm3) | 25℃吸附量/ (mg/cm3) | 40℃吸附量/ (mg/cm3) |
|---|---|---|---|---|---|
| PAF-1 | 0.10 | 过剩吸附 | 97 | 91 | 85 |
| 绝对吸附 | 127 | 114 | 105 | ||
| HCP-2 | 0.38 | 过剩吸附 | 209 | 181 | 144 |
| 绝对吸附 | 278 | 236 | 183 | ||
| XJTU-C | 0.32 | 过剩吸附 | 283 | 236 | 202 |
| 绝对吸附 | 377 | 330 | 257 |
Table 3 Volumetric adsorption capacity of PAF-1, HCP-2 and XJTU-C
| 材料 | 密度/ (g/cm3) | 吸附类型 | 0℃吸附量/(mg/cm3) | 25℃吸附量/ (mg/cm3) | 40℃吸附量/ (mg/cm3) |
|---|---|---|---|---|---|
| PAF-1 | 0.10 | 过剩吸附 | 97 | 91 | 85 |
| 绝对吸附 | 127 | 114 | 105 | ||
| HCP-2 | 0.38 | 过剩吸附 | 209 | 181 | 144 |
| 绝对吸附 | 278 | 236 | 183 | ||
| XJTU-C | 0.32 | 过剩吸附 | 283 | 236 | 202 |
| 绝对吸附 | 377 | 330 | 257 |
| 吸附剂 | a0 | a1 | a2 | a3 | a4 | a5 | b0 | b1 | b2 | R2 |
|---|---|---|---|---|---|---|---|---|---|---|
| PAF-1 | -2623.18291 | 530.31027 | -37.83687 | 1.23826 | -0.07942 | 0.00231 | 14.60973 | -1.50085 | 0.09018 | 0.99943 |
| HCP-2 | -1812.82029 | 85.3354 | -7.18885 | 2.23261 | -0.32743 | 0.02301 | 12.91298 | -0.05764 | -0.00503 | 0.99998 |
| XJTU-C | -2191.83641 | 193.13465 | -28.26386 | 2.86836 | -0.22259 | 0.0073 | 13.37044 | -0.34249 | 0.03439 | 0.99999 |
Table 4 Fitting parameters of Virial equation for Kr adsorption isotherms of three materials
| 吸附剂 | a0 | a1 | a2 | a3 | a4 | a5 | b0 | b1 | b2 | R2 |
|---|---|---|---|---|---|---|---|---|---|---|
| PAF-1 | -2623.18291 | 530.31027 | -37.83687 | 1.23826 | -0.07942 | 0.00231 | 14.60973 | -1.50085 | 0.09018 | 0.99943 |
| HCP-2 | -1812.82029 | 85.3354 | -7.18885 | 2.23261 | -0.32743 | 0.02301 | 12.91298 | -0.05764 | -0.00503 | 0.99998 |
| XJTU-C | -2191.83641 | 193.13465 | -28.26386 | 2.86836 | -0.22259 | 0.0073 | 13.37044 | -0.34249 | 0.03439 | 0.99999 |
| [1] | Boeck W L. Krypton 85, a global contaminant[C]//Electrical Processes in Atmospheres. Heidelberg: Steinkopff, 1976: 713-715. |
| [2] | Ahlswede J, Hebel S, Ross J O, et al. Update and improvement of the global krypton-85 emission inventory[J]. Journal of Environmental Radioactivity, 2013, 115: 34-42. |
| [3] | Peterson M. Krypton 85: nuclear air pollutant[J]. Scientist and Citizen, 1967, 9(3): 54-55. |
| [4] | Tingey G L, McClanahan E D, Bayne M A, et al. Krypton-85 storage in solid matrices[M]//Scientific Basis for Nuclear Waste Management. Boston, MA: Springer US, 1980: 361-368. |
| [5] | Smethie W M, Solomon D K, Schiff S L, et al. Tracing groundwater flow in the Borden aquifer using krypton-85[J]. Journal of Hydrology, 1992, 130(1/2/3/4): 279-297. |
| [6] | Benedict R W, Christensen A B, Del Debbio J A, et al. Technical feasibility of krypton-85 storage in sodalite[M]//Scientific Basis for Nuclear Waste Management. Boston, MA: Springer US, 1980: 369-376. |
| [7] | 熊顺顺, 闫钊通, 刘博煜, 等. 放射性惰性气体分离与分离材料研究进展[J]. 核化学与放射化学, 2020, 42(6): 478-497. |
| Xiong S S, Yan Z T, Liu B Y, et al. Research progress on radioactive noble gas separation and separation materials[J]. Journal of Nuclear and Radiochemistry, 2020, 42(6): 478-497. | |
| [8] | Schoeppner M, Glaser A. Present and future potential of krypton-85 for the detection of clandestine reprocessing plants for treaty verification[J]. Journal of Environmental Radioactivity, 2016, 162: 300-309. |
| [9] | Laser M. Separation, storage, and disposal of krypton-85: status and projects[R]. Germany: N. P., 1976. |
| [10] | 逄锦鑫, 尹玉国, 孙尔雁. 乏燃料后处理中氪-85处理技术研究[J]. 广东化工, 2022, 49(11): 78-80. |
| Pang J X, Yin Y G, Sun E Y. Understanding the treatment technology of Kr-85 during the spent fuel reprocessing[J]. Guangdong Chemical Industry, 2022, 49(11): 78-80. | |
| [11] | 国家质检总局. 核动力厂环境辐射防护: [S]. 北京, 中国标准出版社, 2011. |
| General Administration of Quality Supervision, Inspection and Quarantine. Environmental radiation for nuclear power plants: [S]. Beijing: Standards Press of China, 2011. | |
| [12] | 陆治美. 放射性同位素提取及制源工艺[M]. 北京: 中国原子能出版社, 2012. |
| Lu Z M. Radioisotope Extraction and Source Preparation Technology[M]. Beijing: China Atomic Energy Press, 2012. | |
| [13] | Waggoner R C. Technical and economic evaluation of processes for krypton-85 recovery from power fuel-reprocessing plant off-gas[R]. NASA, 1982. |
| [14] | Christensen A. Physical properties and heat transfer characteristics of materials for krypton-85 storage[R]. OSTI, 1977, 79: 10248. |
| [15] | Chuah C Y, Yu S, Na K, et al. Enhanced SF6 recovery by hierarchically structured MFI zeolite[J]. Journal of Industrial and Engineering Chemistry, 2018, 62: 64-71. |
| [16] | 侯敏. 高性能超级电容器用活性炭的制备研究[D]. 北京: 中国林业科学研究院, 2016. |
| Hou M. Preparation of activated carbon for high performance supercapacitor[D]. Beijing: Chinese Academy of Forestry, 2016. | |
| [17] | Pinchback T R, Knecht D A. The development of process and storage materials suitable for krypton-85 waste management[M]//Scientific Basis for Nuclear Waste Management. Boston, MA: Springer US, 1979: 479-485. |
| [18] | 林舒媛, 张儒静, 姜欣, 等. 碳质材料的气体吸附性能及其在空气净化中的应用[J]. 新型炭材料, 2015, 30(6): 502-510. |
| Lin S Y, Zhang R J, Jiang X, et al. Gas adsorption properties of carbon materials and their applications in air purification[J]. New Carbon Materials, 2015, 30(6): 502-510. | |
| [19] | Mishra R, Panda P, Barman S. Synthesis of sulfur-doped porous carbon for supercapacitor and gas adsorption applications[J]. International Journal of Energy Research, 2022, 46(3): 2585-2600. |
| [20] | Li W N, Wang K Y, Li Z, et al. Preparation of high-performance supercapacitors from waste polyurethane-based hierarchical porous carbon[J]. New Journal of Chemistry, 2022, 46(48): 23328-23337. |
| [21] | Vorokhta M, Morávková J, Dopita M, et al. Effect of micropores on CO2 capture in ordered mesoporous CMK-3 carbon at atmospheric pressure[J]. Adsorption, 2021, 27(8): 1221-1236. |
| [22] | Cai L M, Zhang Y Z, Ma R, et al. Nitrogen-doped hierarchical porous carbon derived from coal for high-performance supercapacitor[J]. Molecules, 2023, 28(9): 3660. |
| [23] | Li F, Xie L J, Sun G H, et al. Boosting the specific surface area of hierarchical porous carbon aerogel through the multiple roles of the catalyst for high-performance supercapacitors[J]. ChemElectroChem, 2017, 4(12): 3119-3125. |
| [24] | Tagbo P C, Ibrahim I, Mohamed G G, et al. Cutting-edge research on mixed-metal MOFs: fabrication, characterization, properties, and uses[J]. Journal of Organometallic Chemistry, 2025, 1028: 123531. |
| [25] | Jubin R T, Bruffey S H. Analysis of krypton-85 legacy waste forms: part Ⅱ[J]. Nuclear Technology, 2019, 205(6): 830-846. |
| [26] | Bernal M P, Coronas J, Menéndez M, et al. Separation of CO2/N2 mixtures using MFI-type zeolite membranes[J]. AIChE Journal, 2004, 50(1): 127-135. |
| [27] | Reato P T, Todero A S, de Oliveira Pereira F, et al. Mesoporous materials of the MCM type: synthesis, application, use of ionic solids and functionalization with graphene: a review[J]. Silicon, 2023, 15(10): 4345-4364. |
| [28] | Liu F, Qin L Y, Ye P W, et al. Introducing molecular sieve into activated carbon to achieve high-effective adsorption for ethylene oxide[J]. Nanomaterials, 2024, 14(18): 1482. |
| [29] | Ben T, Pei C Y, Zhang D L, et al. Gas storage in porous aromatic frameworks (PAFs)[J]. Energy & Environmental Science, 2011, 4(10): 3991-3999. |
| [30] | Díaz U, Corma A. Ordered covalent organic frameworks, COFs and PAFs. From preparation to application[J]. Coordination Chemistry Reviews, 2016, 311: 85-124. |
| [31] | Pei C Y, Ben T, Qiu S L. Great prospects for PAF-1 and its derivatives[J]. Materials Horizons, 2015, 2(1): 11-21. |
| [32] | Garibay S J, Weston M H, Mondloch J E, et al. Accessing functionalized porous aromatic frameworks (PAFs) through a de novo approach[J]. CrystEngComm, 2013, 15(8): 1515-1519. |
| [33] | Demirocak D E, Ram M K, Srinivasan S S, et al. A novel nitrogen rich porous aromatic framework for hydrogen and carbon dioxide storage[J]. Journal of Materials Chemistry A, 2013, 1(44): 13800-13806. |
| [34] | Thool K, Yazar K U, Kavimani V, et al. Microstructural and textural evolution in hexagonal close-packed metals: the case of zirconium, magnesium, and titanium[J]. Crystals, 2024, 14(8): 727. |
| [35] | Bu Y Q, Li Z M, Liu J B, et al. Nonbasal slip systems enable a strong and ductile hexagonal-close-packed high-entropy phase[J]. Physical Review Letters, 2019, 122(7): 075502. |
| [36] | Tracy C L, Park S, Rittman D R, et al. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi[J]. Nature Communications, 2017, 8: 15634. |
| [37] | Yang S K, Zhong Z C, Hu J R, et al. Dibromomethane knitted highly porous hyper-cross-linked polymers for efficient high-pressure methane storage[J]. Advanced Materials, 2024, 36(19): 2307579. |
| [38] | Hou S S, Tan B E. Naphthyl substitution-induced fine tuning of porosity and gas uptake capacity in microporous hyper-cross-linked amine polymers[J]. Macromolecules, 2018, 51(8): 2923-2931. |
| [39] | Ben T, Ren H, Ma S Q, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie International Edition, 2009, 48(50): 9457-9460. |
| [1] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [2] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [3] | Xingliang PEI, Cuiping YE, Yingli PEI, Wenying LI. Selective adsorption and separation of xylene isomers by alkali-modified MIL-53(Cr) [J]. CIESC Journal, 2025, 76(S1): 258-267. |
| [4] | Zihang WU, Zhenyuan XU, Jinfang YOU, Quanwen PAN, Ruzhu WANG. Cooling system for deep well drilling equipment based on adsorption cold storage technology [J]. CIESC Journal, 2025, 76(S1): 309-317. |
| [5] | Guorui HUANG, Yao ZHAO, Mingxi XIE, Erjian CHEN, Yanjun DAI. Experimental study on a novel waste heat recovery system based on desiccant coated exchanger in data center [J]. CIESC Journal, 2025, 76(S1): 409-417. |
| [6] | Xiaoyu WANG, Guilong DAI, Shukun DENG, Lingzhu GONG. Pore-scale simulation of heat transfer and pressure drop performance in Laguerre-Voronoi open-cell foams [J]. CIESC Journal, 2025, 76(7): 3259-3273. |
| [7] | Shenghua YANG, Yangjie SUN, Xiaojun XUE, Jie MI, Jiancheng WANG, Yu FENG. Research progress on gas pollutants removal by defective metal oxides [J]. CIESC Journal, 2025, 76(6): 2469-2482. |
| [8] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [9] | Xinyan PENG, Yunhong LIU, Lingyu CHEN, Yuelan WEI, Shuqin CHEN, Zhudong HU. Preparation of hypercrosslinked polystyrene hemosorbents based on small-molecule external cross-linkers [J]. CIESC Journal, 2025, 76(6): 3093-3103. |
| [10] | Chenghui YAN, Yingming XIE, Zhihai PANG, Shengqiao WENG. Study on strengthening of cold storage of R134a hydrate by foamed porous materials [J]. CIESC Journal, 2025, 76(6): 3084-3092. |
| [11] | Hao QI, Yujie WANG, Shenhui LI, Qi ZOU, Yiqun LIU, Zhiping ZHAO. Molecular simulation study on adsorption and diffusion of C3H6 and C3H8 on Co/Zn-ZIFs [J]. CIESC Journal, 2025, 76(5): 2313-2326. |
| [12] | Chunhui TAO, Yinhui LI, Yu FU, Ran DUAN, Zeyi ZHAO, Yufeng TANG, Gang ZHANG, Heping MA. Selective adsorption and purification of low-concentration Kr gas using various adsorbents [J]. CIESC Journal, 2025, 76(5): 2358-2366. |
| [13] | Jialang HU, Mingyuan JIANG, Lyuming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research [J]. CIESC Journal, 2025, 76(5): 1973-1996. |
| [14] | Yue ZHANG, Jiaxin LIU, Jing MA, Yi LIU. Recent progress on metal-organic framework membranes towards uranium separation from seawater [J]. CIESC Journal, 2025, 76(5): 2087-2100. |
| [15] | Zhichao XU, Zhendong YU, Haofeng WU, Peiwen WU, Hongxiang WU, Yanhong CHAO, Wenshuai ZHU, Zhichang LIU, Chunming XU. Preparation of acid-rich 13X molecular sieve and its ultra-deep adsorption removal of mercaptan in biodiesel [J]. CIESC Journal, 2025, 76(5): 2198-2208. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||