CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3325-3338.DOI: 10.11949/0438-1157.20241394

• Catalysis, kinetics and reactors • Previous Articles     Next Articles

Study on deep carbonization process and kinetics of crude lithium carbonate with CO2 microbubbles

Pengguo XU1(), Ziheng MENG2, Ganyu ZHU2(), Huiquan LI2,3, Chenye WANG2, Zhenhua SUN2, Guocai TIAN1()   

  1. 1.School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650031, Yunnan, China
    2.National Engineering Research Center for Green Recycling of Strategic Metal Resources, CAS Key Laboratory of Green Process Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    3.School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-12-02 Revised:2024-12-29 Online:2025-08-13 Published:2025-07-25
  • Contact: Ganyu ZHU, Guocai TIAN

粗碳酸锂CO2微气泡深度碳化工艺与动力学研究

徐鹏国1(), 孟子衡2, 朱干宇2(), 李会泉2,3, 王晨晔2, 孙振华2, 田国才1()   

  1. 1.昆明理工大学冶金与能源工程学院,云南 昆明 650031
    2.中国科学院过程工程研究所中国科学院绿色过程与工程重点实验室,战略金属资源绿色循环利用国家工程研究中心,北京 100190
    3.中国科学院大学化学工程学院,北京 100049
  • 通讯作者: 朱干宇,田国才
  • 作者简介:徐鹏国(1999—),男,硕士研究生,1741379137@qq.com
  • 基金资助:
    国家重点研发计划项目(2023YFC3905903);中国科学院A类战略性先导科技专项课题(XDA0390404);国家自然科学基金项目(52364042)

Abstract:

The preparation of high-purity lithium carbonate from secondary lithium resources is of great significance for efficient resource utilization and green recycling. The conventional carbonation process typically uses CO2 bubbling, but its low mass transfer efficiency and slow reaction rate restrict industrial application efficiency. To this end, this study used the CO2 microbubble carbonization method to improve the mass transfer rate, focusing on the effects of reaction time, CO2 gas flow rate and liquid-solid ratio on lithium carbonate conversion and CO2 utilization, and constructed a dissolution reaction kinetic model. The results show that compared to the bubbling process, the microbubble carbonation method improves lithium carbonate conversion by approximately 20% and reduces carbonation time by about 56%. Under optimal conditions of a reaction time of 100 min, CO2 flow rate of 120 ml/min, and liquid-solid ratio (ml/g) of 30∶1, lithium carbonate conversion reaches 99.91%, and CO2 utilization rate achieves 94.10%. Kinetic calculations based on the shrinking core model indicate that the dissolution rate follows the film diffusion control model, with activation energy of -2.456 kJ/mol. This research provides fundamental data and process support for the deep carbonation dissolution process of crude lithium carbonate.

Key words: secondary lithium resources, crude lithium carbonate, CO2 microbubbles, dissolution, kinetics

摘要:

二次锂资源制备高纯碳酸锂对于资源高效利用和绿色循环具有重要意义,上述过程一般采用CO2鼓泡法进行碳化,但该过程传质效率低、反应速率慢,限制了其工业应用效率。为此,本研究采用CO2微气泡碳化方法以提高传质速率,重点考察了反应时间、CO2气体流量和液固比等因素对碳酸锂转化率和CO2利用率的影响,并构建了溶解反应动力学模型。结果表明,微气泡碳化与鼓泡工艺相比,可使碳酸锂转化率提高约20%、碳化时间降低约56%;反应时间100 min、CO2流量120 ml/min和液固比(ml/g) 30∶1条件下,碳酸锂转化率达到99.91%、CO2利用率为94.10%;缩核模型动力学计算结果表明溶出速率符合膜扩散控制模型,该过程反应活化能为-2.456 kJ/mol。研究可为粗碳酸锂深度碳化溶解过程提供基础数据和工艺支撑。

关键词: 二次锂资源, 粗碳酸锂, CO2微气泡, 溶解, 动力学

CLC Number: