CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 3873-3884.DOI: 10.11949/0438-1157.20250174
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zicheng ZHU1,2(
), Yunpeng JIAO1, Mengxi LIU2, Jianhua CHEN1(
)
Received:2025-02-24
Revised:2025-04-09
Online:2025-09-17
Published:2025-08-25
Contact:
Jianhua CHEN
通讯作者:
陈建华
作者简介:朱紫橙(2001—),女,硕士研究生,zhuzicheng@ipe.ac.cn
基金资助:CLC Number:
Zicheng ZHU, Yunpeng JIAO, Mengxi LIU, Jianhua CHEN. Simulation analysis on effects of spargers and baffles in three-phase fluidized bed[J]. CIESC Journal, 2025, 76(8): 3873-3884.
朱紫橙, 焦云鹏, 刘梦溪, 陈建华. 三相流化床内分布器与挡板效应的模拟分析[J]. 化工学报, 2025, 76(8): 3873-3884.
Add to citation manager EndNote|Ris|BibTeX
| Parameter | Value |
|---|---|
| reactor diameter/m | 3.2 |
| reactor straight section height/m | 30 |
| superficial gas velocity/(mm/s) | 22.588 |
| superficial liquid velocity/(mm/s) | 2.768 |
| bubble size/mm | 2—10 |
| gas phase density/(kg/m³) | 5.57 (15 MPa, 623.15 K) |
| gas phase viscosity/(Pa·s) | 1.48 × 10-5 (623.15 K) |
| liquid phase density/(kg/m³) | 780 (623.15 K) |
| liquid phase viscosity/(Pa·s) | 0.0187 (15 MPa, 623.15 K) |
| temperature and outlet pressure conditions | 623.15 K/15 MPa |
| catalyst packing height/m | 18 |
| particle density/(kg/m³) | 1500 |
| particle shape | spherical |
| particle size/mm | 0.6 |
| particle packing fraction | 0.41 |
| time step/s | 0.005 |
Table 1 Simulation parameters, operating conditions and physical property parameters
| Parameter | Value |
|---|---|
| reactor diameter/m | 3.2 |
| reactor straight section height/m | 30 |
| superficial gas velocity/(mm/s) | 22.588 |
| superficial liquid velocity/(mm/s) | 2.768 |
| bubble size/mm | 2—10 |
| gas phase density/(kg/m³) | 5.57 (15 MPa, 623.15 K) |
| gas phase viscosity/(Pa·s) | 1.48 × 10-5 (623.15 K) |
| liquid phase density/(kg/m³) | 780 (623.15 K) |
| liquid phase viscosity/(Pa·s) | 0.0187 (15 MPa, 623.15 K) |
| temperature and outlet pressure conditions | 623.15 K/15 MPa |
| catalyst packing height/m | 18 |
| particle density/(kg/m³) | 1500 |
| particle shape | spherical |
| particle size/mm | 0.6 |
| particle packing fraction | 0.41 |
| time step/s | 0.005 |
| Item | Pressure | Velocity | Phase fraction |
|---|---|---|---|
| inlet | fixedFluxPressure | G&L: interstitialInletVelocity S: fixedValue | zeroGradient |
| walls | fixedFluxPressure | G&L: noSlip S: JohnsonJacksonParticleSlip | zeroGradient |
| outlet | prghPressure | pressureInletOutletVelocity | inletOutlet |
Table 2 Boundary conditions for the simulation of gas-liquid-solid three-phase flow
| Item | Pressure | Velocity | Phase fraction |
|---|---|---|---|
| inlet | fixedFluxPressure | G&L: interstitialInletVelocity S: fixedValue | zeroGradient |
| walls | fixedFluxPressure | G&L: noSlip S: JohnsonJacksonParticleSlip | zeroGradient |
| outlet | prghPressure | pressureInletOutletVelocity | inletOutlet |
| Parameter | Value |
|---|---|
| bed diameter/m | 0.254 |
| bed height/m | 2.5 |
| superficial gas velocity/(m/s) | 0.04 |
| superficial liquid velocity/(m/s) | 0.06 |
| air density/(kg/m³) | 1.29 |
| liquid phase density/(kg/m³) | 1000 |
| solid particle density/(kg/m³) | 2500 |
| particle diameter/mm | 2.3 |
Table 3 Experimental parameters of three-phase fluidized bed
| Parameter | Value |
|---|---|
| bed diameter/m | 0.254 |
| bed height/m | 2.5 |
| superficial gas velocity/(m/s) | 0.04 |
| superficial liquid velocity/(m/s) | 0.06 |
| air density/(kg/m³) | 1.29 |
| liquid phase density/(kg/m³) | 1000 |
| solid particle density/(kg/m³) | 2500 |
| particle diameter/mm | 2.3 |
| Parameter | Value |
|---|---|
| bed diameter/m | 0.15 |
| bed height/m | 4.35 |
| superficial gas velocity/(m/s) | 0.031 |
| superficial liquid velocity/(m/s) | 0.049 |
| air density/(kg/m³) | 1.2 |
| liquid phase density/(kg/m³) | 997.4 |
| liquid phase viscosity/(Pa·s) | 3.322 × 10-3 |
| solid particle density/(kg/m³) | 2460 |
| particle diameter/mm | 0.48 |
Table 4 Experimental parameters of three-phase fluidized bed
| Parameter | Value |
|---|---|
| bed diameter/m | 0.15 |
| bed height/m | 4.35 |
| superficial gas velocity/(m/s) | 0.031 |
| superficial liquid velocity/(m/s) | 0.049 |
| air density/(kg/m³) | 1.2 |
| liquid phase density/(kg/m³) | 997.4 |
| liquid phase viscosity/(Pa·s) | 3.322 × 10-3 |
| solid particle density/(kg/m³) | 2460 |
| particle diameter/mm | 0.48 |
| Item | Volume fraction | |||
|---|---|---|---|---|
| 20 m baffle | 6.8 m baffle | |||
| Global | Local | Global | Local | |
| gas phase | 0.055 | 0.055 | 0.054 | 0.059 |
| liquid phase | 0.700 | 0.699 | 0.724 | 0.697 |
| solid phase | 0.244 | 0.245 | 0.222 | 0.243 |
Table 5 The effect of different baffle positions on the global and local three-phase volume fraction
| Item | Volume fraction | |||
|---|---|---|---|---|
| 20 m baffle | 6.8 m baffle | |||
| Global | Local | Global | Local | |
| gas phase | 0.055 | 0.055 | 0.054 | 0.059 |
| liquid phase | 0.700 | 0.699 | 0.724 | 0.697 |
| solid phase | 0.244 | 0.245 | 0.222 | 0.243 |
| [1] | Cahanap D R, Mohammadpour J, Jalalifar S, et al. Prediction of three-phase product yield of biomass pyrolysis using artificial intelligence-based models[J]. Journal of Analytical and Applied Pyrolysis, 2023, 172: 106015. |
| [2] | Ercole A, Raganati F, Salatino P, et al. Continuous succinic acid production by immobilized cells of Actinobacillus succinogenes in a fluidized bed reactor: entrapment in alginate beads[J]. Biochemical Engineering Journal, 2021, 169: 107968. |
| [3] | Han J K, Liu T S, Li Y F, et al. Bed hydrodynamics of a new three-phase fluidized bed flotation column with steel ball particles[J]. Minerals Engineering, 2022, 184: 107669. |
| [4] | Leng E W, He B, Chen J W, et al. Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning[J]. Energy, 2021, 236: 121401. |
| [5] | Pauletto G, Galli F, Gaillardet A, et al. Techno economic analysis of a micro gas-to-liquid unit for associated natural gas conversion[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111457. |
| [6] | Xia Z H, Cui Z Q, Chen Y X, et al. Generative adversarial networks for dual-modality electrical tomography in multi-phase flow measurement[J]. Measurement, 2021, 173: 108608. |
| [7] | Pan H, Chen X Z, Liang X F, et al. CFD simulations of gas-liquid-solid flow in fluidized bed reactors: a review[J]. Powder Technology, 2016, 299: 235-258. |
| [8] | Zhou X H, Ma Y L, Liu M Y, et al. New measurements on hydrodynamics in a gas-liquid-solid expanded bed[J]. Particuology, 2021, 58: 276-284. |
| [9] | 张昊哲. 气-液-固三相流中复杂气泡行为的VOF-DEM数值模拟[D]. 天津: 天津大学, 2022. |
| Zhang H Z. VOF-DEM numerical simulation of complex bubble behavior in gas-liquid-solid three-phase flow[D]. Tianjin: Tianjin University, 2022. | |
| [10] | Sur D H, Mukhopadhyay M. COD reduction of textile effluent in three-phase fluidized bed bioreactor using Pseudomonas aureofaciens and Escherichia coli [J]. 3 Biotech, 2017, 7(2): 141. |
| [11] | See T Y, Raman A A A, Shah R S S R E, et al. Study of sparger location on solid suspension in a triple-impeller stirred vessel[J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11(2): 229-236. |
| [12] | Jena H M, Roy G K, Mahapatra S S. Determination of optimum gas holdup conditions in a three-phase fluidized bed by genetic algorithm[J]. Computers & Chemical Engineering, 2010, 34(4): 476-484. |
| [13] | Baqir A S, Mahood H B, Hameed M S, et al. Heat transfer measurement in a three-phase spray column direct contact heat exchanger for utilisation in energy recovery from low-grade sources[J]. Energy Conversion and Management, 2016, 126: 342-351. |
| [14] | Panda S K, Singh K K, Shenoy K T, et al. Numerical simulations of liquid-liquid flow in a continuous gravity settler using OpenFOAM and experimental verification[J]. Chemical Engineering Journal, 2017, 310: 120-133. |
| [15] | Bilińska M, Bilińska L, Kędzierska-Sar A, et al. Novel bubble column design constructed for catalytic ozonation-effectiveness assessment by hydrodynamics and kinetic regime determination[J]. Ozone: Science & Engineering, 2024, 46(6): 509-525. |
| [16] | Tamburini A, Cipollina A, Micale G, et al. Particle suspension in vortexing unbaffled stirred tanks[J]. Industrial & Engineering Chemistry Research, 2016, 55(27): 7535-7547. |
| [17] | Bao Y Y, Gao Z M, Hao Z G, et al. Effects of equipment and process variables on the suspension of buoyant particles in gas-sparged vessels[J]. Industrial & Engineering Chemistry Research, 2005, 44(20): 7899-7906. |
| [18] | 韦朝海, 李磊. 底隙设置挡板内循环流化床水力特性分析[J]. 化工学报, 2007, 58(10): 2480-2484. |
| Wei C H, Li L. Hydraulic characteristics of internal loop fluidized bed with baffle setting on bottom[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(10): 2480-2484. | |
| [19] | Amblard B, Singh R, Gbordzoe E, et al. CFD modeling of the coke combustion in an industrial FCC regenerator[J]. Chemical Engineering Science, 2017, 170: 731-742. |
| [20] | Khan M J H, Hussain M A, Mansourpour Z, et al. CFD simulation of fluidized bed reactors for polyolefin production—a review[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 3919-3946. |
| [21] | Zhao Z J, Zhou L, Bai L, et al. Recent advances and perspectives of CFD-DEM simulation in fluidized bed[J]. Archives of Computational Methods in Engineering, 2024, 31(2): 871-918. |
| [22] | Hulburt H M, Katz S. Some problems in particle technology: a statistical mechanical formulation[J]. Chemical Engineering Science, 1964, 19(8): 555-574. |
| [23] | Deng J H, Lan S L, Wu J C, et al. CFD-PBM coupled modeling of the liquid-liquid dispersion characteristics and structure optimization for kenics static mixer[J]. Chinese Journal of Chemical Engineering, 2024, 70: 173-188. |
| [24] | 邢继远. CFD-PBM框架下旋流式微泡发生器气泡动力学行为[J]. 化学工程, 2024, 52(3): 59-65. |
| Xing J Y. Bubble dynamics in micro-bubble generator with swirl flow based on CFD-PBM framework[J]. Chemical Engineering (China), 2024, 52(3): 59-65. | |
| [25] | Zhang B, Kong L T, Jin H B, et al. CFD simulation of gas-liquid flow in a high-pressure bubble column with a modified population balance model[J]. Chinese Journal of Chemical Engineering, 2018, 26(6): 1350-1358. |
| [26] | Duan W, Wang C, Zheng Q. CFD-PBM simulation of three-phase flow in the mixing zone of a centrifugal contactor[J]. Fluid Machinery, 2021, 49(11): 25-32. |
| [27] | Ji S M, Ge J Q, Tan D P, et al. Three-phase abrasive flow polishing and distribution characteristics of bubble collapse[J]. Optics and Precision Engineering, 2018, 26(2): 388-398. |
| [28] | Li L, Xu H L, Yang F Q. Three-phase flow of submarine gas hydrate pipe transport[J]. Journal of Central South University, 2015, 22(9): 3650-3656. |
| [29] | Pan H, Liu Q, Luo Z H. Modeling and simulation of particle size distribution behavior in gas-liquid-solid polyethylene fluidized bed reactors[J]. Powder Technology, 2018, 328: 95-107. |
| [30] | Zhang H, Yin Z G, Chi W Q, et al. A new Eulerian-Eulerian-Lagrangian solver in OpenFOAM and its application in a three-phase bubble column[J]. Powder Technology, 2023, 426: 118661. |
| [31] | Zhou X H, Ma Y L, Liu M Y, et al. CFD-PBM simulations on hydrodynamics and gas-liquid mass transfer in a gas-liquid-solid circulating fluidized bed[J]. Powder Technology, 2020, 362: 57-74. |
| [32] | Yu Y H, Kim S D. Bubble characteristics in the radial direction of three-phase fluidized beds[J]. AIChE Journal, 1988, 34(12): 2069-2072. |
| [33] | Cao C Q, Liu M Y, Guo Q J. Experimental investigation into the radial distribution of local phase holdups in a gas-liquid-solid fluidized bed[J]. Industrial & Engineering Chemistry Research, 2007, 46(11): 3841-3848. |
| [34] | Gidaspow D. Multiphase Flow and Fluidization[M]. New York: Academic Press, 1994. |
| [35] | Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE Journal, 1979, 25(5): 843-855. |
| [36] | Liao Y, Oertel R, Kriebitzsch S, et al. A discrete population balance equation for binary breakage[J]. International Journal for Numerical Methods in Fluids, 2018, 87(4): 202-215. |
| [37] | Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns[J]. AIChE Journal, 1990, 36(10): 1485-1499. |
| [38] | Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
| [39] | Kataoka I, Serizawa A. Basic equations of turbulence in gas-liquid two-phase flow[J]. International Journal of Multiphase Flow, 1989, 15(5): 843-855. |
| [40] | Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
| [41] | Che X X, Wu F, Ma X X. Effect of adjusted mesoscale drag model on flue gas desulfurization in powder-particle spouted beds[J]. Frontiers of Chemical Science and Engineering, 2022, 16(6): 909-920. |
| [42] | Islam M T, Nguyen A V. Parametric investigations of different variables on liquid-solid fluidization in a HydroFloat cell using computational fluid dynamics[J]. Chemical Engineering Research and Design, 2020, 159: 13-26. |
| [43] | Mitra-Majumdar D, Farouk B, Shah Y T. Hydrodynamic modeling of three-phase flows through a vertical column[J]. Chemical Engineering Science, 1997, 52(24): 4485-4497. |
| [44] | Fan L S. Gas-Liquid-Solid Fluidization Engineering[M]. London: Butterworths, 1989. |
| [1] | Peizhou DONG, Huiwen YU, Lingcao TAN, Baiping XU, Fang YANG. Mixing in a partially-filled screw channel of a baffled non-twin screw using the moving-particle semi-implicit method [J]. CIESC Journal, 2025, 76(1): 198-207. |
| [2] | Juan WANG, Xiuming LI, Weitao SHAO, Xu DING, Ying HUO, Lianchao FU, Yunyu BAI, Di LI. Numerical simulation of flow and mass transfer characteristics in porous plate bubbling column reactor [J]. CIESC Journal, 2024, 75(3): 801-814. |
| [3] | Bidan ZHAO, Yiyang DAI, Junwu WANG, Yongmin ZHANG. CFD-DEM-IBM simulation on force characteristic on inclined-surface baffles in fluidized beds [J]. CIESC Journal, 2024, 75(1): 255-267. |
| [4] | Tienan LI, Bidan ZHAO, Peng ZHAO, Yongmin ZHANG, Junwu WANG. CFD-DEM simulation of the force acting on immersed baffles during the start-up stage of a gas-solid fluidized bed [J]. CIESC Journal, 2022, 73(6): 2649-2661. |
| [5] | Chenyue LIU, Tong ZHENG, Yuanbo LIU, Rongfu WEN, Kai CHEN, Xuehu MA. Shell side high efficiency and low resistance performance of heat exchanger with bionic structures [J]. CIESC Journal, 2021, 72(9): 4511-4522. |
| [6] | Huahai ZHANG, Yuelin WANG, Banghao LI, Tiefeng WANG. Review of bubble breakup modelling and experimental study in turbulent flow [J]. CIESC Journal, 2021, 72(12): 5936-5954. |
| [7] | Song GAO,Yanyan XU,Jixiang LI,Shuang YE,Weiguang HUANG. Simulation study of microbubbles' break-up and coalescence in centrifugal pump based on TFM-PBM coupling model [J]. CIESC Journal, 2021, 72(10): 5082-5093. |
| [8] | Shuxing ZHENG, Zilong ZHU, Yaping CHEN, Jiafeng WU. Universal calculation model of mass center equivalent rectangle for helical baffle heat exchangers [J]. CIESC Journal, 2020, 71(7): 3050-3059. |
| [9] | Sishi YE, Qiao TANG, Yundong WANG. Measurement of flow characteristics of settler in mixer-settler [J]. CIESC Journal, 2020, 71(2): 535-543. |
| [10] | Guoqiang YANG,Wei ZENG,Huaxun LUO,Gaodong YANG,Zhibing ZHANG. Study on the characteristics of micro-interface intensified oxidation of ammonium sulfite [J]. CIESC Journal, 2020, 71(11): 4918-4926. |
| [11] | Simin WANG, Lijuan SUN, Chen SONG, Zaoxiao ZHANG, Jian WEN. Multi-objective optimization on shell-side performance of rod-baffle heat exchangers with twisted oval tubes [J]. CIESC Journal, 2019, 70(9): 3353-3362. |
| [12] | Huahai ZHANG, Tiefeng WANG. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column [J]. CIESC Journal, 2019, 70(2): 487-495. |
| [13] | WU Jiandong, LIU Qiao, WANG Hao. Experimental investigation of fine particle precipitation in rectangular duct with staggered baffles [J]. CIESC Journal, 2018, 69(S1): 15-19. |
| [14] | GU Xin, LUO Yuankun, XIONG Xiaochao, WANG Ke, TAO Zhilin. Influence of twisty flow heat exchanger's structural parameters on flow field and temperature field [J]. CIESC Journal, 2018, 69(8): 3390-3397. |
| [15] | NIE Lijun, LI Dehao, HE Jingdong, ZHONG Huawen, LIN Peixi, ZHOU Rujin. Treatment of high concentration piggery wastewater by ABR-MAP-MBR process [J]. CIESC Journal, 2018, 69(6): 2722-2729. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||