CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 3976-3989.DOI: 10.11949/0438-1157.20250010
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Kezheng CHEN1(
), Penghui GAO1,2(
), Fuchun YAN1, Bo CHENG1
Received:2025-01-03
Revised:2025-03-14
Online:2025-09-17
Published:2025-08-25
Contact:
Penghui GAO
通讯作者:
高蓬辉
作者简介:陈科拯(1999—),男,博士研究生,632965834@qq.com
基金资助:CLC Number:
Kezheng CHEN, Penghui GAO, Fuchun YAN, Bo CHENG. Influencing factors analysis of condensation heat transfer on hydrophilic-hydrophobic composite surfaces considering droplets dynamic behavior[J]. CIESC Journal, 2025, 76(8): 3976-3989.
陈科拯, 高蓬辉, 焉富春, 程博. 考虑液滴动态行为的亲-疏水复合结构表面冷凝特性影响因素分析[J]. 化工学报, 2025, 76(8): 3976-3989.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 亲水区 | 疏水区 |
|---|---|---|
| 左接触角/(°) | 65.3 | 110.4 |
| 右接触角/(°) | 64.4 | 109.8 |
| 平均接触角/(°) | 64.9 | 110.1 |
| 固体黏附功/(mN/m) | 119.82 | 52.97 |
| 固体表面能/(mN/m) | 69.3 | 40.6 |
Table 1 Surface wetness test results
| 参数 | 亲水区 | 疏水区 |
|---|---|---|
| 左接触角/(°) | 65.3 | 110.4 |
| 右接触角/(°) | 64.4 | 109.8 |
| 平均接触角/(°) | 64.9 | 110.1 |
| 固体黏附功/(mN/m) | 119.82 | 52.97 |
| 固体表面能/(mN/m) | 69.3 | 40.6 |
| [1] | Du Z, Liu B, Liu X, et al. Study on high efficiency separation of low condensation lignin and its dissolution mechanism by 1,4-butanediol combined with p-toluene sulfonic acid pretreatment system[J]. Separation and Purification Technology, 2025, 360: 131059. |
| [2] | Beér J M. High efficiency electric power generation: the environmental role[J]. Progress in Energy and Combustion Science, 2007, 33(2): 107-134. |
| [3] | Zhang Y, Shen F, Cao W F, et al. Hydrophilic/hydrophobic Janus membranes with a dual-function surface coating for rapid and robust membrane distillation desalination[J]. Desalination, 2020, 491: 114561. |
| [4] | Kandlikar S G, Lu Z J. Thermal management issues in a PEMFC stack—a brief review of current status[J]. Applied Thermal Engineering, 2009, 29(7): 1276-1280. |
| [5] | Schmidt E, Schurig W, Sellschopp W. Versuche über die kondensation von wasserdampf in film-und tropfenform[J]. Technische Mechanik und Thermodynamik, 1930, 1(2): 53-63. |
| [6] | 甘园园, 纪献兵, 赵昶, 等.超疏水高/低黏附表面的冷凝传热特性[J].表面技术,2022,51(7):288-296, 323. |
| Gan Y Y, Ji X B, Zhao C, et al. Heat transfer characteristics of superhydrophobic high adhesion surface and superhydrophobic low adhesion surface[J]. Surface Technology, 2022, 51(7): 288-296, 323. | |
| [7] | Miljkovic N, Enright R, Wang E N. Modeling and optimization of superhydrophobic condensation[J]. Journal of Heat Transfer, 2013, 135(11): 111004. |
| [8] | Enright R, Miljkovic N, Dou N, et al. Condensation on superhydrophobic copper oxide nanostructures[J]. Journal of Heat Transfer, 2013, 135(9): 091304. |
| [9] | 李科, 贺文介, 王亚雄. 基于LBM方法的超亲水/疏水组合表面的沸腾冷凝特性研究[J]. 热科学与技术, 2021, 20(5): 417-423. |
| Li K, He W J, Wang Y X. Study on boiling bondensation characteristics of superhydrophilic hydrophobic composite surface based on LBM method[J]. Journal of Thermal Science and Technology, 2021, 20(5): 417-423. | |
| [10] | 姜洪鹏, 白敏丽, 高栋栋, 等. 超疏水/亲水性结构表面流动沸腾传热实验研究[J]. 化工学报, 2021, 72(8): 4093-4103. |
| Jiang H P, Bai M L, Gao D D, et al. Experimental study on flow boiling heat transfer on superhydrophobic/hydrophilic structure surface[J]. CIESC Journal, 2021, 72(8): 4093-4103. | |
| [11] | 刘灯辉, 黄志, 冯妍卉, 等. 超亲水-超疏水组合壁面冷凝性能研究[J]. 工程热物理学报, 2021, 42(2):475-480. |
| Liu D H, Huang Z, Feng Y H, et al. Vapor condensation on hybrid superhydrophilic/superhydrophobic surfaces[J]. Journal of Engineering Thermophysics, 2021, 42(2): 475-480. | |
| [12] | Derby M M, Chatterjee A, Peles Y, et al. Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns[J]. International Journal of Heat and Mass Transfer, 2014, 68: 151-160. |
| [13] | Chatterjee A, Derby M M, Peles Y, et al. Condensation heat transfer on patterned surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 66: 889-897. |
| [14] | Chatterjee A, Derby M M, Peles Y, et al. Enhancement of condensation heat transfer with patterned surfaces[J]. International Journal of Heat and Mass Transfer, 2014, 71: 675-681. |
| [15] | Graham C, Griffith P. Drop size distributions and heat transfer in dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 337-346. |
| [16] | Chen J C. Surface contact: its significance for multiphase heat transfer: diverse examples[J]. Journal of Heat Transfer, 2003, 125(4): 549-566. |
| [17] | Abu-Orabi M. Modeling of heat transfer in dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1998, 41(1): 81-87. |
| [18] | Fevre E L, Rose J W. A theory of heat transfer by dropwise condensation[C]. Proceedings of 3rd International Heat and Mass Transfer Conference, 1966, 2: 362-375. |
| [19] | Vemuri S, Kim K J. An experimental and theoretical study on the concept of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 2006, 49(3/4): 649-657. |
| [20] | Peng B L, Ma X H, Lan Z, et al. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: droplet sizes effect[J]. International Journal of Heat and Mass Transfer, 2014, 77: 785-794. |
| [21] | Peng B L, Ma X H, Lan Z, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 83: 27-38. |
| [22] | 彭本利.液滴动态特性调控强化冷凝传热的研究和LB模拟[D]. 大连: 大连理工大学, 2014. |
| Peng B L. Study and LB simulation of condensation heat transfer enhancement by adjusting dynamic characteristics of droplets[D]. Dalian: Dalian University of Technology, 2014. | |
| [23] | Xie J, She Q T, Xu J L, et al. Mixed dropwise-filmwise condensation heat transfer on biphilic surface[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119273. |
| [24] | Mohamed M A, Ahmed S A, Emeara M S, et al. Experimental study for enhancing condensation on large-scale surface using hybrid hydrophilic-hydrophobic patterns[J]. Case Studies in Thermal Engineering, 2023, 45: 102984. |
| [25] | Xie J, Xu J L, Shang W, et al. Mode selection between sliding and rolling for droplet on inclined surface: effect of surface wettability[J]. International Journal of Heat and Mass Transfer, 2018, 122: 45-58. |
| [26] | Qi B J, Wei J J, Zhang L, et al. A fractal dropwise condensation heat transfer model including the effects of contact angle and drop size distribution[J]. International Journal of Heat and Mass Transfer, 2015, 83: 259-272. |
| [27] | 郭亚丽, 王润, 刘瑞, 等.蒸汽滴状冷凝演变和液滴生长方式的研究[J]. 工程热物理学报, 2023, 44(7):1881-1890. |
| Guo Y L, Wang R, Liu R, et al. Study on the evolution of steam dropwise condensation and droplet growth mode[J]. Journal of Engineering Thermophysics, 2023, 44(7): 1881-1890. | |
| [28] | 兰忠, 马学虎, 张宇, 等. 引入液固界面效应的滴状冷凝传热模型[J]. 化工学报, 2005, 56(9): 1626-1632. |
| Lan Z, Ma X H, Zhang Y, et al. Dropwise condensation heat transfer model with liquid-solid surface free energy difference effect[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(9): 1626-1632. | |
| [29] | Lee S, Yoon H K, Kim K J, et al. A dropwise condensation model using a nano-scale, pin structured surface[J]. International Journal of Heat and Mass Transfer, 2013, 60: 664-671. |
| [30] | Vemuri S, Kim K J. An experimental and theoretical study on the concept of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 2006, 49(3/4): 649-657. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [3] | Wei SU, Dahai ZHAO, Xu JIN, Zhongyan LIU, Jing LI, Xiaosong ZHANG. Delaying condensation frosting using biphilic surfaces coupled with spatial control of liquid desiccant [J]. CIESC Journal, 2025, 76(S1): 140-151. |
| [4] | Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate [J]. CIESC Journal, 2025, 76(8): 4030-4041. |
| [5] | Lu LIU, Ying YANG, Haowen YANG, Tai WANG, Teng WANG, Xinyu DONG, Run YAN. Experimental investigations of condensation droplet shedding characteristics on star-shaped hydrophobic-hydrophilic hybrid surfaces [J]. CIESC Journal, 2025, 76(8): 3905-3914. |
| [6] | Tonghui LI, Tianli HUI, Tao ZHENG, Rui ZHANG, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG. Synergistic palladium double active sites with hydroxide for high current density and pH-universal hydrogen evolution reaction [J]. CIESC Journal, 2025, 76(7): 3671-3685. |
| [7] | Yuhang CHEN, Jinguo CHEN, Weiyi CHEN, Kang WANG, Hao ZHENG, Changliang HAN. Gas distribution performance and multi objective parameters optimization of submerged combustion vaporizer flue gas distributor [J]. CIESC Journal, 2025, 76(7): 3274-3285. |
| [8] | Jiangyue GUO, Shoujin CHANG, Haitao HU. Numerical simulation for flow condensation of methanol in horizontal tube [J]. CIESC Journal, 2025, 76(6): 2580-2588. |
| [9] | Haochen TIAN, Zhixian MA, Zhihao WANG. Film condensation heat transfer characteristics of R1234ze(E) on a horizontal three-dimensional finned tube [J]. CIESC Journal, 2025, 76(3): 975-984. |
| [10] | Jijun ZOU, Baohong LIU, Chengxiang SHI, Lun PAN, Xiangwen ZHANG. Research progress of heterogeneous catalysts for conversion of holocellulose derivatives into bio-aviation fuels [J]. CIESC Journal, 2025, 76(1): 1-17. |
| [11] | Zhenghang LUO, Jingyu LI, Weixiong CHEN, Daotong CHONG, Junjie YAN. Numerical simulation of heat transfer characteristic and bubble force analysis of low flow rate vapor condensation under rolling motion [J]. CIESC Journal, 2024, 75(8): 2800-2811. |
| [12] | Aoyue HONG, Qiang XU, Shuaizhi JIANG, Xiangyu LI, Xiaojun MA, Liejin GUO. Study on vibration induced by direct contact condensation of steam jet [J]. CIESC Journal, 2024, 75(8): 2723-2733. |
| [13] | Wenkai CHENG, Jinyu YAN, Jiajun WANG, Lianfang FENG. Research progress of horizontal kneading reactor and its application in polymerization industry [J]. CIESC Journal, 2024, 75(3): 768-781. |
| [14] | Zhicheng DENG, Shifeng XU, Qidong WANG, Jiarui WANG, Simin WANG. Process and energy consumption analysis of high salt and high COD wastewater treatment by submerged combustion [J]. CIESC Journal, 2024, 75(3): 1000-1008. |
| [15] | Mingqing TAO, Minghao MU, Teng CHENG, Bo WANG. Research on spray coupled cooling to enhance the removal of fine particles by cyclone separator [J]. CIESC Journal, 2024, 75(2): 584-592. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||