CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 975-984.DOI: 10.11949/0438-1157.20240890
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Haochen TIAN(), Zhixian MA(
), Zhihao WANG
Received:
2024-08-05
Revised:
2024-09-03
Online:
2025-03-28
Published:
2025-03-25
Contact:
Zhixian MA
通讯作者:
马志先
作者简介:
田浩辰(2000—),男,硕士研究生,2332547790@mail.dlut.edu.cn
基金资助:
CLC Number:
Haochen TIAN, Zhixian MA, Zhihao WANG. Film condensation heat transfer characteristics of R1234ze(E) on a horizontal three-dimensional finned tube[J]. CIESC Journal, 2025, 76(3): 975-984.
田浩辰, 马志先, 王之浩. R1234ze(E)水平三维肋管外膜状凝结特性实验研究[J]. 化工学报, 2025, 76(3): 975-984.
管类型 | 管外径 do/mm | 管内径 di/mm | 肋密度/ fpm | 一次肋 | 二次肋 | ||||
---|---|---|---|---|---|---|---|---|---|
肋高 h1/mm | 肋间距 s1/mm | 肋厚度 t1/mm | 肋高 h2/mm | 肋间距 s2/mm | 肋厚度 t2/mm | ||||
光管 | 19.05 | 16.50 | — | — | — | — | — | — | — |
三维肋管 | 19.05 | 16.41 | 1811 | 0.90 | 0.37 | 0.18 | 0.46 | 0.16 | 0.25 |
Table 1 Structure parameters of 3D tube
管类型 | 管外径 do/mm | 管内径 di/mm | 肋密度/ fpm | 一次肋 | 二次肋 | ||||
---|---|---|---|---|---|---|---|---|---|
肋高 h1/mm | 肋间距 s1/mm | 肋厚度 t1/mm | 肋高 h2/mm | 肋间距 s2/mm | 肋厚度 t2/mm | ||||
光管 | 19.05 | 16.50 | — | — | — | — | — | — | — |
三维肋管 | 19.05 | 16.41 | 1811 | 0.90 | 0.37 | 0.18 | 0.46 | 0.16 | 0.25 |
管类型 | 管外径/mm | 管内径/mm | 肋高/ mm | 肋间距/mm | 肋密度/fpm |
---|---|---|---|---|---|
3D管(本文) | 19.05 | 16.41 | 0.90 | 0.55 | 1811 |
3D管[ | 19.05 | 16.41 | 0.90 | 0.55 | 1811 |
C1[ | 18.99 | 17.14 | 0.857 | — | 1772 |
C2[ | 19.00 | 17.12 | 0.790 | — | 1772 |
Ti管[ | 16.01 | 14.87 | 0.300 | 0.784 | 1299 |
Tu管[ | 18.88 | 15.60 | 0.61 | — | 2362 |
Table 2 Specifications and dimensions of heat exchange tubes in literature
管类型 | 管外径/mm | 管内径/mm | 肋高/ mm | 肋间距/mm | 肋密度/fpm |
---|---|---|---|---|---|
3D管(本文) | 19.05 | 16.41 | 0.90 | 0.55 | 1811 |
3D管[ | 19.05 | 16.41 | 0.90 | 0.55 | 1811 |
C1[ | 18.99 | 17.14 | 0.857 | — | 1772 |
C2[ | 19.00 | 17.12 | 0.790 | — | 1772 |
Ti管[ | 16.01 | 14.87 | 0.300 | 0.784 | 1299 |
Tu管[ | 18.88 | 15.60 | 0.61 | — | 2362 |
1 | Gil B, Kasperski J. Efficiency evaluation of the ejector cooling cycle using a new generation of HFO/HCFO refrigerant as a R134a replacement[J]. Energies, 2018, 11(8): 2136. |
2 | Devecioğlu A G, Oruç V. Characteristics of some new generation refrigerants with low GWP[J]. Energy Procedia, 2015, 75: 1452-1457. |
3 | Hossain M A, Onaka Y, Miyara A. Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze(E), R32 and R410A[J]. International Journal of Refrigeration, 2012, 35(4): 927-938. |
4 | Mota-Babiloni A, Navarro-Esbrí J, Molés F, et al. A review of refrigerant R1234ze(E) recent investigations[J]. Applied Thermal Engineering, 2016, 95: 211-222. |
5 | Del Col D, Bortolato M, Azzolin M, et al. Condensation heat transfer and two-phase frictional pressure drop in a single minichannel with R1234ze(E) and other refrigerants[J]. International Journal of Refrigeration, 2015, 50: 87-103. |
6 | van Rooyen E, Thome J R. Pool boiling data and prediction method for enhanced boiling tubes with R-134a, R-236fa and R-1234ze(E)[J]. International Journal of Refrigeration, 2013, 36(2): 447-455. |
7 | Ko J W, Jeon D S, Kim Y L, et al. Experimental study on film condensation heat transfer characteristics of R1234ze(E) and R1233zd(E) over horizontal plain tubes[J]. Journal of Mechanical Science and Technology, 2018, 32(1): 527-534. |
8 | 李莉. 强化管外HFO1234ze凝结及其非稳态特性试验[D]. 郑州: 中原工学院, 2019. |
Li L. Experiment on condensation and unsteady characteristics of HFO1234ze outside strengthened tube[D]. Zhengzhou: Zhongyuan University of Technology, 2019. | |
9 | Nagata R, Kondou C, Koyama S. Comparative assessment of condensation and pool boiling heat transfer on horizontal plain single tubes for R1234ze(E), R1234ze(Z), and R1233zd(E)[J]. International Journal of Refrigeration, 2016, 63: 157-170. |
10 | Ji W T, Chong G H, Zhao C Y, et al. Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium tubes[J]. International Journal of Refrigeration, 2018, 93: 259-268. |
11 | 栾金刚. 水平三维低肋管外凝结传热数值模拟[D]. 郑州: 中原工学院, 2022. |
Luan J G. Numerical simulation of condensation heat transfer outside horizontal three-dimensional low-ribbed tube[D]. Zhengzhou: Zhongyuan University of Technology, 2022. | |
12 | Ko J W, Jeon D S. Experimental study on film condensation heat transfer characteristics of R134a, R1234ze(E) and R1233zd(E) over condensation tube with enhanced surfaces[J]. Heat and Mass Transfer, 2020, 56(11): 3001-3010. |
13 | Ji W T, Lu X D, Yu Q N, et al. Film-wise condensation of R-134a, R-1234ze(E) and R-1233zd(E) outside the finned tubes with different fin thickness[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118829. |
14 | 谭娟. R1234ze与R134a在低肋管外膜状凝结换热实验研究[D]. 郑州: 中原工学院, 2018. |
Tan J. Experimental study of R1234ze and R134a on film condensation heat transfer outside the low rib tube[D]. Zhengzhou: Zhongyuan University of Technology, 2022. | |
15 | 孙晨, 欧阳新萍, 夏荣鑫. R1234ze(E)与R134a在水平双侧强化管外的凝结换热对比实验[J]. 热能动力工程, 2021, 36(8): 72-77. |
Sun C, Ouyang X P, Xia R X. Experimental comparison on condensation heat transfer of R1234ze(E) and R134a on horizontal double-sided strengthened tube[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(8): 72-77. | |
16 | 党坤儒. R1234ze(E)与R134a在光管与低肋管外凝结传热数值模拟[J]. 科技风, 2021(35): 143-146. |
Dang K R. Condensation heat transfer characteristics of R1234ze(E) and R134a outside plain and low rib tubes[J]. Technology Wind, 2021(35): 143-146. | |
17 | 马志先, 张吉礼, 孙德兴, 等. HFC134a水平二维与三维肋管外冷凝换热特性[J]. 化工学报, 2014, 65(4): 1221-1228. |
Ma Z X, Zhang J L, Sun D X, et al. Film condensation characteristics of HFC134a on enhanced horizontal tubes with two dimensional and three dimensional integral fins[J]. CIESC Journal, 2014, 65(4): 1221-1228. | |
18 | Guo X C, Ma Z X, Chen J D, et al. Precise determination of inundation effect coefficient of film condensation on an array of horizontal new three-dimensional finned tube[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121216. |
19 | 马志先. 水平管束外膜状凝结换热试验与理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. |
Ma Z X. Experimental and theoretical study on film condensation heat transfer outside horizontal tube bundle[D]. Harbin: Harbin Institute of Technology, 2012. | |
20 | Chen J D, Zhang J L, Ma Z X. Precision determination of film condensation row effect of R134a condensation on an array of horizontal plain tubes[J]. Experimental Thermal and Fluid Science, 2019, 109: 109849. |
21 | Wilson E E. A basis for rational design of heat transfer apparatus[J]. Transactions of the American Society of Mechanical Engineers, 1915, 37: 47-70. |
22 | Gnielinski V. New equations for heat and hass transfer in turbulent pipe and channel flows[J]. Chemical Engineering, 1976, 16(2): 359-368. |
23 | Fujii T. Overlooked factors and unsolved problems in experimental research on condensation heat transfer[J]. Experimental Thermal and Fluid Science, 1992, 5(5): 652-663. |
24 | Fernández-Seara J, Uhía F J, Sieres J, et al. A general review of the Wilson plot method and its modifications to determine convection coefficients in heat exchange devices[J]. Applied Thermal Engineering, 2007, 27(17/18): 2745-2757. |
25 | 赵振宇, 张吉礼, 马志先. 凝结换热试验台监控和数据采集系统开发[J]. 建筑热能通风空调, 2015, 34(6): 78-82. |
Zhao Z Y, Zhang J L, Ma Z X. Development of SCADA system for the experimental plant of condensation heat transfer[J]. Building Energy & Environment, 2015, 34(6): 78-82. | |
26 | 马志先, 张吉礼, 孙德兴. HFC245fa水平光管与强化管管束外冷凝换热[J]. 化工学报, 2010, 61(5): 1097-1106. |
Ma Z X, Zhang J L, Sun D X. Condensation heat transfer coefficient of HFC245fa on horizontal smooth and enhanced tube bundles[J]. CIESC Journal, 2010, 61(5): 1097-1106. | |
27 | 张定才, 王凯, 何雅玲,等. R134a在水平双侧强化管外沸腾换热[J]. 化工学报, 2007, 58(11): 2710-2714. |
Zhang D C, Wang K, He Y L, al et, Boiling heat transfer of R 134 a outside single horizontal doubly-enhanced tubes[J]. CIESC Journal, 2007, 58(11): 2710-2714. | |
28 | Nusselt W. Die oberflachen-kondensation des wasserdampfes[J]. Z. Vereines Deutsch. Ing, 1916, 60: 541-546, 569-575. |
29 | Gstoehl D, Thome J R. Film condensation of R-134a on tube arrays with plain and enhanced surfaces (part Ⅰ):Experimental heat transfer coefficients[J]. Journal of Heat Transfer, 2006, 128(1): 21-32. |
30 | Gstoehl D, Thome J R. Film condensation of R-134a on tube arrays with plain and enhanced surfaces (part Ⅱ):Empirical prediction of inundation effects[J]. Journal of Heat Transfer, 2006, 128(1): 33-43. |
[1] | Yiming ZHANG, Peng YANG, Xianbing JI, Jixing REN, Lei ZHANG, Zheng MIAO. Thermal performance of multi-loop flat loop heat pipes [J]. CIESC Journal, 2025, 76(3): 1018-1028. |
[2] | Zongting WANG, Lili WANG, Xiaoyan SUN, Li XIA, Shaohui TAO, Shuguang XIANG. Simplified phase equilibrium correlation-based efficient and short-cut distillation column model [J]. CIESC Journal, 2025, 76(3): 1133-1142. |
[3] | Ke LI, Biping XIN, Jian WEN. Sequential quadratic programming optimization of continuous variable density multi-layer insulation coupled with vapor cooled shield in liquid hydrogen storage tank [J]. CIESC Journal, 2025, 76(3): 985-994. |
[4] | Yanfang YU, Puyu ZHANG, Huibo MENG, Wen SUN, Wen LI, Wenlong QIAO, Mengqiong ZHANG. Experimental study on heat transfer and turbulent fluctuation characteristics of biomimetic conch static mixer [J]. CIESC Journal, 2025, 76(3): 1040-1049. |
[5] | Jingrun LI, Siyu YANG, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Hao YU. Analysis of multiple operating strategies for large-scale wind power coupled with thermal power for hydrogen production under various scenarios [J]. CIESC Journal, 2025, 76(3): 1191-1206. |
[6] | Yaqi HOU, Wei ZHANG, Hong ZHANG, Feiyu GAO, Jiahua HU. Optimization of LBM multiphase flow models based on machine learning and particle swarm algorithm [J]. CIESC Journal, 2025, 76(3): 1120-1132. |
[7] | Qin SUN, Guoqing ZHOU, Wanling ZHAI, Shan GAO, Qianqian LUO, Jian QU. Heat transfer characteristics of topology optimized channel flat-plate pulsating heat pipe under local multiple heat sources [J]. CIESC Journal, 2025, 76(3): 1006-1017. |
[8] | Xiankai ZHANG, Boyu WANG, Yali GUO, Shengqiang SHEN. Calculation and analysis of thermal performance of horizontal circular tube falling film evaporative condenser [J]. CIESC Journal, 2025, 76(3): 995-1005. |
[9] | Xinyu ZHENG, Zehua REN, Li ZHOU, Shiyang CHAI, Xu JI. Lattice energy regression model based on crystal graph convolutional neural networks [J]. CIESC Journal, 2025, 76(3): 1084-1092. |
[10] | Guojia YAO, Zhi WANG, Ang SU, Dongge FENG, Hong TANG, Lingfang SUN. Investigation of the effect of air coefficient on the combustion characteristics of pulverized coal pre-pyrolysis [J]. CIESC Journal, 2025, 76(3): 1243-1252. |
[11] | Zilin PENG, Lei ZHOU, Qinghang DENG, Guanghua YE, Xinggui ZHOU. Kinetics of 3D NAND flash wet etching with phosphoric acid under the influence of H2SiO3 [J]. CIESC Journal, 2025, 76(2): 645-653. |
[12] | Yuxuan WU, Cheng CHANG, Xueping GU, Lianfang FENG, Cailiang ZHANG. Modeling of butadiene emulsion polymerization process for stereoisomerization [J]. CIESC Journal, 2025, 76(2): 879-887. |
[13] | Chuanchao HE, Jinghong ZHOU, Yueqiang CAO, Yao SHI, Xinggui ZHOU. Bed-particle dual scale coupled simulation on Ag/SiO2 catalyzed hydrogenation of oxalate to methyl glycolate [J]. CIESC Journal, 2025, 76(2): 654-666. |
[14] | Xiaonan YOU, Xiaoqiang FAN, Yao YANG, Jingdai WANG, Yongrong YANG. Modeling method of depressurization separation process of the mixture of high-pressure polyethylene and supercritical ethylene [J]. CIESC Journal, 2025, 76(2): 695-706. |
[15] | Falu DANG, Zhiguo SUN, Zhao GAO, Gang WANG, Zhengyu CHEN, Linzhou ZHANG, Jingcun LIAN, Meijia LIU, Zhongdong ZHANG, Chaowei LIU. One-step catalytic cracking of crude oil to light olefins: experimental and reaction pathway studies [J]. CIESC Journal, 2025, 76(2): 667-685. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 388
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 180
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||