CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4694-4708.DOI: 10.11949/0438-1157.20250203
• Special Column: Modeling and Simulation in Process Engineering • Previous Articles Next Articles
Yiyang LIU(
), Zhixiang XING(
), Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN
Received:2025-03-03
Revised:2025-03-26
Online:2025-10-23
Published:2025-09-25
Contact:
Zhixiang XING
刘奕扬(
), 邢志祥(
), 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟
通讯作者:
邢志祥
作者简介:刘奕扬(2000—),男,硕士研究生,s22200837007@smail.cczu.edu.cn
基金资助:CLC Number:
Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations[J]. CIESC Journal, 2025, 76(9): 4694-4708.
刘奕扬, 邢志祥, 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708.
Add to citation manager EndNote|Ris|BibTeX
| 工况 | 风速/(m/s) | 环境温度/K | 环境压力/Pa | 泄漏温度/K | 泄漏质量率/(kg/s) | 总泄漏质量/kg |
|---|---|---|---|---|---|---|
| 1 | 1 | 300 | 101325 | 19.576 | 9.52 | 571.2 |
| 2 | 3 | 300 | 101325 | 19.576 | 9.52 | 571.2 |
| 3 | 5 | 300 | 101325 | 19.576 | 9.52 | 571.2 |
| 4 | 7 | 300 | 101325 | 19.576 | 9.52 | 571.2 |
| 5 | 9 | 300 | 101325 | 19.576 | 9.52 | 571.2 |
Table 1 Liquid hydrogen release conditions at different wind speeds
| 工况 | 风速/(m/s) | 环境温度/K | 环境压力/Pa | 泄漏温度/K | 泄漏质量率/(kg/s) | 总泄漏质量/kg |
|---|---|---|---|---|---|---|
| 1 | 1 | 300 | 101325 | 19.576 | 9.52 | 571.2 |
| 2 | 3 | 300 | 101325 | 19.576 | 9.52 | 571.2 |
| 3 | 5 | 300 | 101325 | 19.576 | 9.52 | 571.2 |
| 4 | 7 | 300 | 101325 | 19.576 | 9.52 | 571.2 |
| 5 | 9 | 300 | 101325 | 19.576 | 9.52 | 571.2 |
| 参数 | 解决方法 |
|---|---|
| 压力-速度耦合 | PISO scheme |
| 梯度空间离散化 | 最小二乘单元基础 |
| 压力空间离散化 | 体积力加权(Body-Force-Weighted) |
| 其他参数空间离散化 | QUICK |
| 瞬态公式 | 二阶隐式 |
| 收敛标准 | 连续性方程、动量方程及能量方程均设置为10-6 |
| 时间步长 | 0.005 s |
Table 2 Solution parameter settings for liquid hydrogen leak simulation
| 参数 | 解决方法 |
|---|---|
| 压力-速度耦合 | PISO scheme |
| 梯度空间离散化 | 最小二乘单元基础 |
| 压力空间离散化 | 体积力加权(Body-Force-Weighted) |
| 其他参数空间离散化 | QUICK |
| 瞬态公式 | 二阶隐式 |
| 收敛标准 | 连续性方程、动量方程及能量方程均设置为10-6 |
| 时间步长 | 0.005 s |
| 传感器编号 | X轴坐标 | Y轴坐标 | Z轴坐标 | 传感器编号 | X轴坐标 | Y轴坐标 | Z轴坐标 |
|---|---|---|---|---|---|---|---|
| 传感器#1 | 72.5 m | 31.125 m | 0.8 m | 传感器#5 | 69.5 m | 32.125 m | 0.8 m |
| 传感器#2 | 72.5 m | 39.125 m | 0.8 m | 传感器#6 | 69.5 m | 38.125 m | 0.8 m |
| 传感器#3 | 76.5 m | 35.125 m | 0.8 m | 传感器#7 | 75.5 m | 32.125 m | 0.8 m |
| 传感器#4 | 68.5 m | 35.125 m | 0.8 m | 传感器#8 | 75.5 m | 38.125 m | 0.8 m |
Table 3 Distribution of sensor locations
| 传感器编号 | X轴坐标 | Y轴坐标 | Z轴坐标 | 传感器编号 | X轴坐标 | Y轴坐标 | Z轴坐标 |
|---|---|---|---|---|---|---|---|
| 传感器#1 | 72.5 m | 31.125 m | 0.8 m | 传感器#5 | 69.5 m | 32.125 m | 0.8 m |
| 传感器#2 | 72.5 m | 39.125 m | 0.8 m | 传感器#6 | 69.5 m | 38.125 m | 0.8 m |
| 传感器#3 | 76.5 m | 35.125 m | 0.8 m | 传感器#7 | 75.5 m | 32.125 m | 0.8 m |
| 传感器#4 | 68.5 m | 35.125 m | 0.8 m | 传感器#8 | 75.5 m | 38.125 m | 0.8 m |
| 序号 | 传感器编号 | 温度/K | ||||
|---|---|---|---|---|---|---|
| 1 m/s | 3 m/s | 5 m/s | 7 m/s | 9 m/s | ||
| 1 | #1 | 297.71069 | 297.50644 | 299.57645 | 297.01297 | 296.77554 |
| 2 | #2 | 297.95734 | 298.37772 | 299.51477 | 299.11505 | 299.41852 |
| 3 | #3 | 34.83273 | 34.77265 | 34.39214 | 34.65065 | 34.5325 |
| 4 | #4 | 299.95398 | 299.9968 | 299.87085 | 299.89569 | 299.9389 |
| 5 | #5 | 299.99759 | 299.99698 | 299.99799 | 299.9971 | 299.9968 |
| 6 | #6 | 299.99716 | 299.99744 | 299.9964 | 299.99793 | 299.99759 |
| 7 | #7 | 30.59479 | 31.77259 | 35.54715 | 35.91454 | 38.64581 |
| 8 | #8 | 27.87232 | 27.87064 | 28.02964 | 28.68729 | 29.52563 |
Table 4 Response values of temperature sensors at 0.5 s
| 序号 | 传感器编号 | 温度/K | ||||
|---|---|---|---|---|---|---|
| 1 m/s | 3 m/s | 5 m/s | 7 m/s | 9 m/s | ||
| 1 | #1 | 297.71069 | 297.50644 | 299.57645 | 297.01297 | 296.77554 |
| 2 | #2 | 297.95734 | 298.37772 | 299.51477 | 299.11505 | 299.41852 |
| 3 | #3 | 34.83273 | 34.77265 | 34.39214 | 34.65065 | 34.5325 |
| 4 | #4 | 299.95398 | 299.9968 | 299.87085 | 299.89569 | 299.9389 |
| 5 | #5 | 299.99759 | 299.99698 | 299.99799 | 299.9971 | 299.9968 |
| 6 | #6 | 299.99716 | 299.99744 | 299.9964 | 299.99793 | 299.99759 |
| 7 | #7 | 30.59479 | 31.77259 | 35.54715 | 35.91454 | 38.64581 |
| 8 | #8 | 27.87232 | 27.87064 | 28.02964 | 28.68729 | 29.52563 |
| 序号 | 工况 | 式(13)计算浓度 | 氢气模拟浓度 | 相对误差 | 式(14)计算氢浓度 | 液氢模拟浓度 | 相对误差 |
|---|---|---|---|---|---|---|---|
| 1 | 1 m/s风速 | 0.03146 | 0.02972 | 5.85% | 0.06340 | 0.06121 | 3.578% |
| 2 | 3 m/s风速 | 0.03132 | 0.03172 | 1.26% | 0.06271 | 0.07007 | 6.22% |
| 3 | 5 m/s风速 | 0.03088 | 0.02840 | 8.73% | 0.06052 | 0.06338 | 4.51% |
| 4 | 7 m/s风速 | 0.03084 | 0.03337 | 7.58% | 0.06031 | 0.05685 | 6.09% |
| 5 | 9 m/s风速 | 0.03052 | 0.0294 | 3.81% | 0.05877 | 0.05535 | 6.18% |
Table 5 Comparison of calculated and simulated values of liquid hydrogen and gaseous hydrogen for sensor #7
| 序号 | 工况 | 式(13)计算浓度 | 氢气模拟浓度 | 相对误差 | 式(14)计算氢浓度 | 液氢模拟浓度 | 相对误差 |
|---|---|---|---|---|---|---|---|
| 1 | 1 m/s风速 | 0.03146 | 0.02972 | 5.85% | 0.06340 | 0.06121 | 3.578% |
| 2 | 3 m/s风速 | 0.03132 | 0.03172 | 1.26% | 0.06271 | 0.07007 | 6.22% |
| 3 | 5 m/s风速 | 0.03088 | 0.02840 | 8.73% | 0.06052 | 0.06338 | 4.51% |
| 4 | 7 m/s风速 | 0.03084 | 0.03337 | 7.58% | 0.06031 | 0.05685 | 6.09% |
| 5 | 9 m/s风速 | 0.03052 | 0.0294 | 3.81% | 0.05877 | 0.05535 | 6.18% |
| [1] | Witcofski R D, Chirivella J E. Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills[J]. International Journal of Hydrogen Energy, 1984, 9(5): 425-435. |
| [2] | Statharas J C, Venetsanos A G, Bartzis J G, et al. Analysis of data from spilling experiments performed with liquid hydrogen[J]. Journal of Hazardous Materials, 2000, 77(1/2/3): 57-75. |
| [3] | Hooker P, Willoughby D, Hall J, et al. Experimental releases of liquid hydrogen[C]// International Conference on Hydrogen Safety, San Francisco, 2011. |
| [4] | Xiao J S, He P, Li X F, et al. Computational fluid dynamics model based artificial neural network prediction of flammable vapor clouds formed by liquid hydrogen releases[J]. International Journal of Energy Research, 2022, 46(8): 11011-11026. |
| [5] | Zhou C L, Yang Z, Chen G H, et al. Optimizing hydrogen refueling station layout based on consequences of leakage and explosion accidents[J]. International Journal of Hydrogen Energy, 2024, 54: 817-836. |
| [6] | Xiao J J, Breitung W, Kuznetsov M, et al. GASFLOW-MPI: a new 3-D parallel all-speed CFD code for turbulent dispersion and combustion simulations(part Ⅰ): Models, verification and validation[J]. International Journal of Hydrogen Energy, 2017, 42(12): 8346-8368. |
| [7] | Mao X B, Ying R S, Yuan Y P, et al. Simulation and analysis of hydrogen leakage and explosion behaviors in various compartments on a hydrogen fuel cell ship[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6857-6872. |
| [8] | Wang F N, Xiao J J, Kuznetsov M, et al. Deterministic risk assessment of hydrogen leak from a fuel cell truck in a real-scale hydrogen refueling station[J]. International Journal of Hydrogen Energy 2024, 50: 1103-1118. |
| [9] | 厉劲风, 方凯, 许好好, 等.大空间液氢射流泄漏扩散特性[J]. 化工学报, 2022, 73(11): 5177-5185. |
| Li J F, Fang K, Xu H H, et al. Diffusion features of jet leakage with liquid hydrogen in large space[J]. CIESC Journal, 2022, 73(11): 5177-5185. | |
| [10] | Qian J Y, Liu C, Qiu C, et al. Liquid hydrogen cavitation analysis inside an oblique globe valve[J]. Flow Measurement and Instrumentation, 2024, 97: 102599. |
| [11] | Qian J Y, Li X J, Gao Z X, et al. A numerical study of hydrogen leakage and diffusion in a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2020, 45(28): 14428-14439. |
| [12] | Giannissi S G, Venetsanos A G. A comparative CFD assessment study of cryogenic hydrogen and LNG dispersion[J]. International Journal of Hydrogen Energy, 2019, 44(17): 9018-9030. |
| [13] | Giannissi S G, Venetsanos A G. Study of key parameters in modeling liquid hydrogen release and dispersion in open environment[J]. International Journal of Hydrogen Energy, 2018, 43(1): 455-467. |
| [14] | Giannissi S G, Tolias I C, Melideo D, et al. On the CFD modelling of hydrogen dispersion at low-Reynolds number release in closed facility[J]. International Journal of Hydrogen Energy, 2021, 46(57): 29745-29761. |
| [15] | Giannissi S G, Venetsanos A G, Markatos N, et al. CFD modeling of hydrogen dispersion under cryogenic release conditions[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15851-15863. |
| [16] | Tang X, Pu L, Shao X Y, et al. Dispersion behavior and safety study of liquid hydrogen leakage under different application situations[J]. International Journal of Hydrogen Energy, 2020, 45(55): 31278-31288. |
| [17] | SKlavounos S, Rigas F. Fuel gas dispersion under cryogenic release conditions[J]. Energy & Fuels, 2005, 19(6): 2535-2544. |
| [18] | Pu L, Shao X Y, Zhang S Q, et al. Plume dispersion behaviour and hazard identification for large quantities of liquid hydrogen leakage[J]. Asia- Pacific Journal of Chemical Engineering, 2019, 14(2): e2299. |
| [19] | Kim E, Park J, Cho J H, et al. Simulation of hydrogen leak and explosion for the safety design of hydrogen fueling station in Korea[J]. International Journal of Hydrogen Energy, 2013, 38(3): 1737-1743. |
| [20] | Tanaka T, Azuma T, Evans J, et al. Experimental study on hydrogen explosions in a full-scale hydrogen filling station model[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2162-2170. |
| [21] | Shirvill L C, Roberts T A, Royle M, et al. Safety studies on high-pressure hydrogen vehicle refuelling stations: releases into a simulated high-pressure dispensing area[J]. International Journal of Hydrogen Energy, 2012, 37(8): 6949-6964. |
| [22] | Kikukawa S. Consequence analysis and safety verification of hydrogen fueling stations using CFD simulation[J]. International Journal of Hydrogen Energy, 2008, 33(4): 1425-1434. |
| [23] | 张颖, 宿禹祺, 陈俊帅, 等. 氢气传感器研究的进展与展望[J]. 科学通报, 2023, 68(S1): 204-219. |
| Zhang Y, Su Y Q, Chen J S, et al. Progress and prospects of research on hydrogen sensors[J]. Chinese Science Bulletin, 2023, 68(S1): 204-219. | |
| [24] | Bellegoni M, Ovidi F, Tempesti L, et al. Optimization of gas detectors placement in complex industrial layouts based on CFD simulations[J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104859. |
| [25] | Dong J K, Du W L, Wang B, et al. Impact analysis of multi-sensor layout on the source term estimation of hazardous gas leakage[J]. Journal of Loss Prevention in the Process Industries, 2021, 73: 104579. |
| [26] | Dong J K, Wang B, Wang X J, et al. Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation[J]. Chinese Journal of Chemical Engineering, 2023, 56: 169-179. |
| [27] | Jiang Y, Zhou Q, Xiao S Y, et al. Optimized deployment method and performance evaluation of gas sensor network based on field experiment[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(1): 729-744. |
| [28] | Idris A M, Rusli R, Nasif M S, et al. A fuzzy multi-objective optimisation model of risk-based gas detector placement methodology for explosion protection in oil and gas facilities[J]. Process Safety and Environmental Protection, 2022, 161: 571-582. |
| [29] | Gao Y, Liu H, Hou Y P. Effects of leakage location and ventilation condition on hydrogen leakage during shipping of fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2024, 54: 1532-1543. |
| [30] | 中华人民共和国住房和城乡建设部. 加氢站技术规范: [S]. 北京: 中国计划出版社, 2021. |
| Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for bydrogen fuelling station: [S]. Beijing: China Planning Press, 2021. | |
| [31] | Xu B, Chang R, Li P, et al. Reflective optical fiber sensor based on light polarization modulation for hydrogen sensing[J]. Josa B, 2019, 36(12): 3471-3478. |
| [32] | Kobayashi H, Naruo Y, Maru Y, et al. Experiment of cryo-compressed (90-MPa) hydrogen leakage diffusion[J]. International Journal of Hydrogen Energy, 2018, 43(37): 17928-17937. |
| [33] | 中华人民共和国住房和城乡建设部. 石油化工可燃气体和有毒气体检测报警设计标准: [S]. 北京: 中国计划出版社, 2019. |
| Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of combustible gas and toxic gas detection and alarm for petrochemical industry: [S]. Beijing: China Planning Press, 2019. | |
| [34] | 石文. 《加氢站技术规范GB 50516—2010(2021年版)》正式发布[J]. 石油库与加油站, 2021, 30(2): 8. |
| Shi W. Technical Specification for Hydrogen Refueling stations GB 50516—2010 (2021 edition) was officially released[J]. Oil depots and gas stations 2021, 30(2): 8. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [4] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [5] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [6] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [7] | Jianbin PENG, Ming LI, Junlong XIE, Jianye CHEN. Numerical investigation of liquid hydrogen leakage and explosion overpressure at liquid hydrogen receiving terminal [J]. CIESC Journal, 2025, 76(S1): 453-461. |
| [8] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [9] | Hao DING, Lin WANG, Hao LIU. Comparative study on mixing rules of vapor-liquid equilibrium for R290/R245fa [J]. CIESC Journal, 2025, 76(S1): 9-16. |
| [10] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [11] | Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels [J]. CIESC Journal, 2025, 76(9): 4578-4585. |
| [12] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [13] | Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling [J]. CIESC Journal, 2025, 76(9): 4933-4943. |
| [14] | Yifei WANG, Yuxing LI, Xin OUYANG, Xuefeng ZHAO, Lan MENG, Qihui HU, Buze YIN, Yaqi GUO. Numerical calculation of CO2 pipeline fracture propagation based on crack tip decompression characteristics [J]. CIESC Journal, 2025, 76(9): 4683-4693. |
| [15] | Kaiyuan YANG, Xizhong CHEN. Comparison of discrete element method and finite-discrete element method for simulation of agglomerate breakage [J]. CIESC Journal, 2025, 76(9): 4398-4411. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||