CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4709-4722.DOI: 10.11949/0438-1157.20250290
• Reviews and monographs • Previous Articles Next Articles
Zequan LI1(
), Tianyu CAI1, Jiajun LIU2, Qizhi CHEN3, Peiwen XIAO4(
), Xiaofei XU2(
), Shuangliang ZHAO1(
)
Received:2025-03-24
Revised:2025-05-07
Online:2025-10-23
Published:2025-09-25
Contact:
Peiwen XIAO, Xiaofei XU, Shuangliang ZHAO
李泽权1(
), 蔡天宇1, 刘家骏2, 陈奇志3, 肖沛文4(
), 徐小飞2(
), 赵双良1(
)
通讯作者:
肖沛文,徐小飞,赵双良
作者简介:李泽权(1992—),男,博士,讲师,zequan@gxu.edu.cn
基金资助:CLC Number:
Zequan LI, Tianyu CAI, Jiajun LIU, Qizhi CHEN, Peiwen XIAO, Xiaofei XU, Shuangliang ZHAO. Synthesis and application of lignin-based flocculants[J]. CIESC Journal, 2025, 76(9): 4709-4722.
李泽权, 蔡天宇, 刘家骏, 陈奇志, 肖沛文, 徐小飞, 赵双良. 木质素基絮凝剂的合成与应用[J]. 化工学报, 2025, 76(9): 4709-4722.
Add to citation manager EndNote|Ris|BibTeX
| 类型 | 单体 |
|---|---|
| 非离子型 | 丙烯酰胺(AM) |
| 阳离子型 | 丙烯酰氧乙基三甲基氯化铵(DAC) |
| 甲基丙烯酰氧乙基三甲基氯化铵(DMC) | |
| 3-氯-2-羟丙基三甲基氯化铵(CHPTAC) | |
| (3-丙烯酰胺丙基)三甲基氯化铵(ATMAC) | |
| 二甲基二烯丙基氯化铵(DMDMAC) | |
| 阴离子型 | 丙烯酸(AA) |
| 苯乙烯磺酸(SSA) | |
| 2-丙烯酰胺-2-甲基丙磺酸(AMPS) |
Table 1 Examples of monomers used in graft copolymerization reactions for the preparation of lignin-based flocculants
| 类型 | 单体 |
|---|---|
| 非离子型 | 丙烯酰胺(AM) |
| 阳离子型 | 丙烯酰氧乙基三甲基氯化铵(DAC) |
| 甲基丙烯酰氧乙基三甲基氯化铵(DMC) | |
| 3-氯-2-羟丙基三甲基氯化铵(CHPTAC) | |
| (3-丙烯酰胺丙基)三甲基氯化铵(ATMAC) | |
| 二甲基二烯丙基氯化铵(DMDMAC) | |
| 阴离子型 | 丙烯酸(AA) |
| 苯乙烯磺酸(SSA) | |
| 2-丙烯酰胺-2-甲基丙磺酸(AMPS) |
| 脂肪胺与醛类 | 种类 | 举例 |
|---|---|---|
| 脂肪胺 | 多胺 | 乙二胺、己二胺、三乙基四胺、四乙基五胺 |
| 氨基酸 | 甘氨酸、亚氨基二乙酸 | |
| 醛类 | 单醛 | 甲醛、乙醛、丙醛、苯甲醛、糠醛 |
| 二醛 | 戊二醛、乙二醛 | |
| 不饱和醛 | 丙烯醛、丁烯醛 |
Table 2 Commonly used aliphatic amines and aldehydes in lignin Mannich reaction
| 脂肪胺与醛类 | 种类 | 举例 |
|---|---|---|
| 脂肪胺 | 多胺 | 乙二胺、己二胺、三乙基四胺、四乙基五胺 |
| 氨基酸 | 甘氨酸、亚氨基二乙酸 | |
| 醛类 | 单醛 | 甲醛、乙醛、丙醛、苯甲醛、糠醛 |
| 二醛 | 戊二醛、乙二醛 | |
| 不饱和醛 | 丙烯醛、丁烯醛 |
| [1] | Norgren M, Edlund H. Lignin: recent advances and emerging applications[J]. Current Opinion in Colloid & Interface Science, 2014, 19(5): 409-416. |
| [2] | Bajwa D S, Pourhashem G, Ullah A H, et al. A concise review of current lignin production, applications, products and their environmental impact[J]. Industrial Crops and Products, 2019, 139: 111526. |
| [3] | 苏秀茹, 傅英娟, 李宗全, 等. 木质素的分离提取与高值化应用研究进展[J]. 大连工业大学学报, 2021, 40(2): 107-115. |
| Su X R, Fu Y J, Li Z Q, et al. Research progress on extraction and high-value application of lignin[J]. Journal of Dalian Polytechnic University, 2021, 40(2): 107-115. | |
| [4] | Wang B, Chen T Y, Wang H M, et al. Amination of biorefinery technical lignins using Mannich reaction synergy with subcritical ethanol depolymerization[J]. International Journal of Biological Macromolecules, 2018, 107: 426-435. |
| [5] | 陶用珍, 管映亭. 木质素的化学结构及其应用[J]. 纤维素科学与技术, 2003, 11(1): 42-55. |
| Tao Y Z, Guan Y T. Study of chemical composition of lignin and its application[J]. Journal of Cellulose Science and Technology, 2003, 11(1): 42-55. | |
| [6] | Abu-Omar M M, Barta K, Beckham G T, et al. Guidelines for performing lignin-first biorefining[J]. Energy & Environmental Science, 2021, 14(1): 262-292. |
| [7] | Calvo-Flores F G, Dobado J A. Lignin as renewable raw material[J]. ChemSusChem, 2010, 3(11): 1227-1235. |
| [8] | Karthäuser J, Biziks V, Mai C, et al. Lignin and lignin-derived compounds for wood applications-a review[J]. Molecules, 2021, 26(9): 2533. |
| [9] | Kai D, Tan M J, Chee P L, et al. Towards lignin-based functional materials in a sustainable world[J]. Green Chemistry, 2016, 18(5): 1175-1200. |
| [10] | Huang C X, Peng Z W, Li J J, et al. Unlocking the role of lignin for preparing the lignin-based wood adhesive: a review[J]. Industrial Crops and Products, 2022, 187: 115388. |
| [11] | 黎载波, 王国庆, 邹龙生. 木质素絮凝剂的研究进展[J]. 精细与专用化学品, 2002, 10(23): 17-19. |
| Li Z B, Wang G Q, Zou L S. Research progress of lignin flocculant[J]. Fine and Specialty Chemicals, 2002, 10(23): 17-19. | |
| [12] | Evstigneyev E I, Shevchenko S M. Structure, chemical reactivity and solubility of lignin: a fresh look[J]. Wood Science and Technology, 2019, 53(1): 7-47. |
| [13] | Ghorbani M, Liebner F, van Herwijnen H W G, et al. Lignin phenol formaldehyde resoles: the impact of lignin type on adhesive properties[J]. BioResources, 2016, 11(3): 6727-6741. |
| [14] | Jiang J Q. The role of coagulation in water treatment[J]. Current Opinion in Chemical Engineering, 2015, 8: 36-44. |
| [15] | Lee C S, Robinson J, Chong M F. A review on application of flocculants in wastewater treatment[J]. Process Safety and Environmental Protection, 2014, 92(6): 489-508. |
| [16] | Matilainen A, Vepsäläinen M, Sillanpää M. Natural organic matter removal by coagulation during drinking water treatment: a review[J]. Advances in Colloid and Interface Science, 2010, 159(2): 189-197. |
| [17] | Joo D J, Shin W S, Choi J H, et al. Decolorization of reactive dyes using inorganic coagulants and synthetic polymer[J]. Dyes and Pigments, 2007, 73(1): 59-64. |
| [18] | Renault F, Sancey B, Badot P M, et al. Chitosan for coagulation/flocculation processes—an eco-friendly approach[J]. European Polymer Journal, 2009, 45(5): 1337-1348. |
| [19] | Okuda T, Nishijima W, Sugimoto M, et al. Removal of coagulant aluminum from water treatment residuals by acid[J]. Water Research, 2014, 60: 75-81. |
| [20] | Wu W, Qi J J, Fang J, et al. One-pot preparation of lignin-based cationic flocculant and its application in dye wastewater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654: 130082. |
| [21] | Liu H L, Chung H. Lignin-based polymers via graft copolymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(21): 3515-3528. |
| [22] | Wu W, Zhao Y Y, Qi J J, et al. An amphiphilic flocculant with a lignin core for efficient separation of suspended solids[J]. Separation and Purification Technology, 2023, 314: 123640. |
| [23] | Chen N, Liu W F, Huang J H, et al. Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation[J]. International Journal of Biological Macromolecules, 2020, 146: 9-17. |
| [24] | Wang B, Wang H M, Sun D, et al. Chemosynthesis, characterization and application of lignin-based flocculants with tunable performance prepared by short-wavelength ultraviolet initiation[J]. Industrial Crops and Products, 2020, 157: 112897. |
| [25] | Cui G P, Wang X J, Xun J J, et al. Microwave assisted synthesis and characterization of a ternary flocculant from chitosan, acrylamide and lignin[J]. International Biodeterioration & Biodegradation, 2017, 123: 269-275. |
| [26] | Pan H, Sun G, Zhao T. Synthesis and characterization of aminated lignin[J]. International Journal of Biological Macromolecules, 2013, 59: 221-226. |
| [27] | 郭建欣, 朱虹, 齐之锴. 木质素类絮凝剂的合成及应用研究[J]. 造纸化学品, 2010, 22(6): 6-9. |
| Guo J X, Zhu H, Qi Z K. Study on synthesis and application of lignin-based flocculants[J]. Paper Chemicals, 2010, 22(6): 6-9. | |
| [28] | 岳萱, 乔卫红, 申凯华, 等. 曼尼希反应与木质素的改性[J]. 精细化工, 2001, 18(11): 670-673. |
| Yue X, Qiao W H, Shen K H, et al. Mannich reaction and modification of lignin[J]. Fine Chemicals, 2001, 18(11): 670-673. | |
| [29] | Wang X H, Zhang Y K, Hao C, et al. Ultrasonic-assisted synthesis of aminated lignin by a Mannich reaction and its decolorizing properties for anionic azo-dyes[J]. RSC Advances, 2014, 4(53): 28156-28164. |
| [30] | Jiao Y. Synthesis and application of the cationic lignin amine flocculant[J]. Tenside Surfactants Detergents, 2010, 47(6): 381-384. |
| [31] | Matsushita Y, Yasuda S. Preparation of anion-exchange resins from pine sulfuric acid lignin, one of the acid hydrolysis lignins[J]. Journal of Wood Science, 2003, 49(5): 423-429. |
| [32] | Sheehan J D, Ebikade E, Vlachos D G, et al. Lignin-based water-soluble polymers exhibiting biodegradability and activity as flocculating agents[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(34): 11117-11129. |
| [33] | Parajuli D, Inoue K, Ohto K, et al. Adsorption of heavy metals on crosslinked lignocatechol: a modified lignin gel[J]. Reactive and Functional Polymers, 2005, 62(2): 129-139. |
| [34] | Runkana V, Somasundaran P, Kapur P C. A population balance model for flocculation of colloidal suspensions by polymer bridging[J]. Chemical Engineering Science, 2006, 61(1): 182-191. |
| [35] | 刘德启. 尿醛预聚体改性木质素絮凝剂对重革废水的脱色效果[J]. 中国皮革, 2004, 33(5): 27-29. |
| Liu D Q. Tanned wastewater decoloured by lignin positiveion flocculant modified by carbamide and formaldehyde[J]. China Leather, 2004, 33(5): 27-29. | |
| [36] | Rachor D G, Ludwig C H. Lignin composition and process for its preparation: US3912706[P]. 1975-10-14. |
| [37] | Liu Z M, Xu D D, Xia N N, et al. Preparation and application of phosphorylated xylan as a flocculant for cationic ethyl violet dye[J]. Polymers, 2018, 10(3): 317. |
| [38] | 郭建欣, 麻晓霞. 改性木质素类絮凝剂的合成及其应用效果研究[J]. 化学世界, 2011, 52(5): 310-313. |
| Guo J X, Ma X X. Synthesis of modified lignin based flocculant and its application[J]. Chemical World, 2011, 52(5): 310-313. | |
| [39] | Upton B M, Kasko A M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective[J]. Chemical Reviews, 2016, 116(4): 2275-2306. |
| [40] | Glasser W G, Barnett C A, Rials T G, et al. Engineering plastics from lignin ( Ⅱ): Characterization of hydroxyalkyl lignin derivatives[J]. Journal of Applied Polymer Science, 1984, 29(5): 1815-1830. |
| [41] | Ge Y Y, Li Z L, Kong Y, et al. Heavy metal ions retention by bi-functionalized lignin: synthesis, applications, and adsorption mechanisms[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4429-4436. |
| [42] | Aro T, Fatehi P. Production and application of lignosulfonates and sulfonated lignin[J]. ChemSusChem, 2017, 10(9): 1861-1877. |
| [43] | Zhang W X, Wang X J, Xu Q, et al. Synthesis of lignosulfonate-acrylamide-dimethyldiallylammonium chloride copolymer and its flocculation performance[J]. Journal of Applied Polymer Science, 2020, 137(15): 48560. |
| [44] | He K P, Lou T J, Wang X, et al. Preparation of lignosulfonate-acrylamide-chitosan ternary graft copolymer and its flocculation performance[J]. International Journal of Biological Macromolecules, 2015, 81: 1053-1058. |
| [45] | Guo Y Z, Gao W J, Kong F G, et al. One-pot preparation of zwitterion-type lignin polymers[J]. International Journal of Biological Macromolecules, 2019, 140: 429-440. |
| [46] | Boráň J, Houdková L, Elsäßer T. Processing of sewage sludge: dependence of sludge dewatering efficiency on amount of flocculant[J]. Resources, Conservation and Recycling, 2010, 54(5): 278-282. |
| [47] | Fang R, Cheng X S, Xu X R. Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater[J]. Bioresource Technology, 2010, 101(19): 7323-7329. |
| [48] | 杜凤龄, 徐敏, 王刚, 等. 絮凝剂处理重金属废水的研究进展[J]. 工业水处理, 2014, 34(12): 12-16. |
| Du F L, Xu M, Wang G, et al. Research progress in flocculants applied to the treatment of wastewater containing heavy metals[J]. Industrial Water Treatment, 2014, 34(12): 12-16. | |
| [49] | Li S L, Gao L H, Cao Y J, et al. Effect of pH on the flocculation behaviors of Kaolin using a pH-sensitive copolymer[J]. Water Science and Technology, 2016, 74(3): 729-737. |
| [50] | Feng X, Wan J J, Deng J C, et al. Preparation of acrylamide and carboxymethyl cellulose graft copolymers and the effect of molecular weight on the flocculation properties in simulated dyeing wastewater under different pH conditions[J]. International Journal of Biological Macromolecules, 2020, 155: 1142-1156. |
| [51] | 刘定富, 王国海, 曾祥钦. 温度对木质素溶液絮凝沉降的影响[J]. 贵州工业大学学报, 1999, 28(3): 15-17. |
| Liu D F, Wang G H, Zeng X Q. Effect of temperature on flocculation and sedimentation of lignin solution[J]. Journal of Guizhou University of Technology (Natural Science Edition), 1999, 28(3): 15-17. | |
| [52] | Bolto B, Gregory J. Organic polyelectrolytes in water treatment[J]. Water Research, 2007, 41(11): 2301-2324. |
| [53] | Gregory J, Barany S. Adsorption and flocculation by polymers and polymer mixtures[J]. Advances in Colloid and Interface Science, 2011, 169(1): 1-12. |
| [54] | Guo K Y, Gao B Y, Wang W Y, et al. Evaluation of molecular weight, chain architectures and charge densities of various lignin-based flocculants for dye wastewater treatment[J]. Chemosphere, 2019, 215: 214-226. |
| [55] | Yang R, Li H J, Huang M, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95: 59-89. |
| [56] | Zeng T, Hu X Q, Wu H, et al. Microwave assisted synthesis and characterization of a novel bio-based flocculant from dextran and chitosan[J]. International Journal of Biological Macromolecules, 2019, 131: 760-768. |
| [57] | Wang B, Wang S F, Lam S S, et al. A review on production of lignin-based flocculants: sustainable feedstock and low carbon footprint applications[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110384. |
| [58] | Jiang X C, Li Y S, Tang X H, et al. Biopolymer-based flocculants: a review of recent technologies[J]. Environmental Science and Pollution Research International, 2021, 28(34): 46934-46963. |
| [59] | Caskey J A, Primus R J. The effect of anionic polyacrylamide molecular conformation and configuration on flocculation effectiveness[J]. Environmental Progress, 1986, 5(2): 98-103. |
| [60] | 杨增吉. PEO/CF絮凝体系的缔合聚合物架桥机理[J]. 国际造纸, 2006(3): 27-31, 34. |
| Yang Z J. Association-induced polymer bridging by poly(ethylene oxide)-cofactor flocculation system[J]. World Pulp and Paper, 2006(3): 27-31, 34. | |
| [61] | Biggs S, Habgood M, Jameson G J, et al. Aggregate structures formed via a bridging flocculation mechanism[J]. Chemical Engineering Journal, 2000, 80(1/2/3): 13-22. |
| [62] | Sher F, Malik A, Liu H. Industrial polymer effluent treatment by chemical coagulation and flocculation[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 684-689. |
| [63] | Yang Z, Yang H, Jiang Z W, et al. Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide[J]. Journal of Hazardous Materials, 2013, 254: 36-45. |
| [64] | Wang Z, Huang W X, Yang G H, et al. Preparation of cellulose-base amphoteric flocculant and its application in the treatment of wastewater[J]. Carbohydrate Polymers, 2019, 215: 179-188. |
| [65] | Li Y, Yao S L, Dong X S, et al. Preparation of a lignin-based cationic flocculant and its application in Kaolin suspension treatment[J]. Polymers, 2024, 16(8): 1131. |
| [66] | Moore C, Gao W J, Fatehi P. Cationic lignin polymers as flocculants for municipal wastewater[J]. Water and Environment Journal, 2023, 37(1): 95-102. |
| [67] | Chen X Q, Si C L, Fatehi P. Cationic xylan-(2-methacryloyloxyethyl trimethyl ammonium chloride) polymer as a flocculant for pulping wastewater[J]. Carbohydrate Polymers, 2018, 186: 358-366. |
| [68] | Sun D T, Zeng J, Yang D J, et al. Full biomass-based multifunctional flocculant from lignin and cationic starch[J]. International Journal of Biological Macromolecules, 2023, 253: 127287. |
| [69] | Kazzaz A E, Hosseinpour Feizi Z, Fatehi P. Interaction of sulfomethylated lignin and aluminum oxide[J]. Colloid and Polymer Science, 2018, 296(11): 1867-1878. |
| [70] | Aldajani M, Alipoormazandarani N, Kong F G, et al. Acid hydrolysis of kraft lignin-acrylamide polymer to improve its flocculation affinity[J]. Separation and Purification Technology, 2021, 258: 117964. |
| [71] | Wang T, Jiang M W, Yu X L, et al. Application of lignin adsorbent in wastewater treatment: a review[J]. Separation and Purification Technology, 2022, 302: 122116. |
| [72] | Li J, Yu H Q, Zhang X, et al. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(Ⅵ) and Congo red: adsorptive and mechanistic study[J]. Frontiers of Environmental Science & Engineering, 2020, 14(3): 52. |
| [73] | Guo K Y, Gao B Y, Li R H, et al. Flocculation performance of lignin-based flocculant during reactive blue dye removal: comparison with commercial flocculants[J]. Environmental Science and Pollution Research International, 2018, 25(3): 2083-2095. |
| [74] | Jiang J X, Shi Y, Ma N L, et al. Utilizing adsorption of wood and its derivatives as an emerging strategy for the treatment of heavy metal-contaminated wastewater[J]. Environmental Pollution, 2024, 340: 122830. |
| [75] | Wang H, Song J L, Yan M Y, et al. Waste lignin-based cationic flocculants treating dyeing wastewater: fabrication, performance, and mechanism[J]. Science of the Total Environment, 2023, 874: 162383. |
| [76] | Wang S J, Kong F G, Fatehi P, et al. Cationic high molecular weight lignin polymer: a flocculant for the removal of anionic azo-dyes from simulated wastewater[J]. Molecules, 2018, 23(8): 2005. |
| [77] | He W M, Zhang Y Q, Fatehi P. Sulfomethylated kraft lignin as a flocculant for cationic dye[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503: 19-27. |
| [78] | 李爱阳, 李大森, 李安伍. 改性木质素磺酸盐处理含镉废水的研究[J]. 工业水处理, 2009, 29(11): 28-31. |
| Li A Y, Li D S, Li A W. Study on the treatment of cadmium-containing wastewater with modified lignosulfonate[J]. Industrial Water Treatment, 2009, 29(11): 28-31. | |
| [79] | Jin C, Zhang X Y, Xin J N, et al. Thiol-ene synthesis of cysteine-functionalized lignin for the enhanced adsorption of Cu (Ⅱ) and Pb (Ⅱ)[J]. Industrial & Engineering Chemistry Research, 2018, 57(23): 7872-7880. |
| [80] | Wang B, Wen J L, Sun S L, et al. Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (Ⅱ)[J]. Industrial Crops and Products, 2017, 108: 72-80. |
| [81] | 刘伟峰, 邱学青, 陈念, 等. 一种超支化木质素接枝阳离子聚丙烯酰胺絮凝剂及其制备方法: 201811009449.9[P]. 2020-09-22. |
| Liu W F, Qiu X Q, Chen N, et al. A hyperbranched lignin-grafted cationic polyacrylamide flocculant and its preparation method: 201811009449.9[P]. 2020-09-22. | |
| [82] | 李泽权, 唐晶晶, 赵双良, 等. 一种新型木质素基氧肟酸型絮凝剂及其制备方法和应用: 202410666047.5[P]. 2024-08-16. |
| Li Z Q, Tang J J, Zhao S L, et al. A novel lignin-based oxime acid-type flocculant, its preparation method, and application: 202410666047.5[P]. 2024-08-16. |
| [1] | Guoxiang HU, Yikui ZHU, Hua LONG, Xiaowen LIU, Qingang XIONG. Study on the underlying mechanism of choline chloride-lactic acid molar ratio influencing alkali lignin solubility in choline chloride-lactic acid deep eutectic solvents [J]. CIESC Journal, 2025, 76(9): 4449-4461. |
| [2] | Yuanshen DAI, Zhijiang SHAO, Weifeng CHEN, Ning CHEN. Dynamic prediction method of particle size distribution in ternary precursor crystallization process based on population balance equations [J]. CIESC Journal, 2025, 76(8): 4119-4128. |
| [3] | Xincheng LU, Xiaolei GUO, Shicheng WANG, Haifeng LU, Haifeng LIU. Study on comminution characteristics of straw biomass [J]. CIESC Journal, 2025, 76(7): 3539-3551. |
| [4] | Tianhao WU, Tingwei YE, Yan LIN, Zhen HUANG. In-situ hydrogen supplementation of biomass chemical looping gasification to produce syngas with controllable H2/CO [J]. CIESC Journal, 2025, 76(7): 3498-3508. |
| [5] | Qinwen LIU, Hengbing YE, Yiwei ZHANG, Fahua ZHU, Wenqi ZHONG. Study on pressurized oxy-fuel co-combustion characteristics of coal and poultry litter [J]. CIESC Journal, 2025, 76(7): 3487-3497. |
| [6] | Xinran LI, Longjiao CHANG, Shaohua LUO, Yongbing LI, Ruifen YANG, Zenglei HOU, Jie ZOU. Modification mechanism of Ho doped NCM622 induced local electron remodeling to inhibit cationic mixing [J]. CIESC Journal, 2025, 76(7): 3733-3741. |
| [7] | Min XIONG, Dongmei LIU, Zhichao WANG, Li ZHOU, Xu JI. Optimization and adjustment of operating parameters for green ammonia production under variable load conditions [J]. CIESC Journal, 2025, 76(6): 2791-2801. |
| [8] | Haiyan JI, Jiayin LIU, Haijun WU, Jinglin HE, Ziheng JIN, Dianhang WEI, Xia JIANG. Research progress on the application of low-temperature plasma in biomass gasification to produce hydrogen [J]. CIESC Journal, 2025, 76(6): 2419-2433. |
| [9] | Chang ZHANG, Qiang XIE, Yutong SHA, Bingjie WANG, Dingcheng LIANG, Jinchang LIU. Preparation of bamboo char with low ash and silicon content and electrochemical properties of its derived hard carbon [J]. CIESC Journal, 2025, 76(6): 3073-3083. |
| [10] | Zhineng TAO, Tong QIU, Baoguo WANG. Steady-state modeling on hydrogen production by anion exchange membrane water electrolysis [J]. CIESC Journal, 2025, 76(4): 1711-1721. |
| [11] | Mengqi SHI, Huan WANG, Shoujuan WANG, Yuebin XI, Fangong KONG. Research progress of lignin-based polyporous carbon in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(4): 1463-1483. |
| [12] | Fang XU, Rui ZHANG, Da CUI, Qing WANG. Study of pyrolysis reaction mechanism of lignin revealed by ReaxFF-MD simulation [J]. CIESC Journal, 2025, 76(3): 1253-1263. |
| [13] | Junbing XIAO, Bo ZOU, Jiandi REN, Changhui LIU, Chuankun JIA. Research on heat storage performance of chloride composite molten salt based on phase diagram analysis [J]. CIESC Journal, 2025, 76(3): 963-974. |
| [14] | Wenzhi DAI, Xiongjian SHEN, Xiaobo SONG, Xinle YANG. Environmental analysis of biomass double-stage evaporation double-regenerative organic Rankine cycle system [J]. CIESC Journal, 2025, 76(3): 1230-1242. |
| [15] | Falu DANG, Zhiguo SUN, Zhao GAO, Gang WANG, Zhengyu CHEN, Linzhou ZHANG, Jingcun LIAN, Meijia LIU, Zhongdong ZHANG, Chaowei LIU. One-step catalytic cracking of crude oil to light olefins: experimental and reaction pathway studies [J]. CIESC Journal, 2025, 76(2): 667-685. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||