CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4862-4871.DOI: 10.11949/0438-1157.20250122
• Separation engineering • Previous Articles Next Articles
Jianmin ZHANG(
), Meigui HE, Wanxin JIA, Jing ZHAO(
), Wanqin JIN
Received:2025-02-10
Revised:2025-03-24
Online:2025-10-23
Published:2025-09-25
Contact:
Jing ZHAO
通讯作者:
赵静
作者简介:张建民(1999—),硕士研究生,zhangjianmin@njtech.edu.cn
基金资助:CLC Number:
Jianmin ZHANG, Meigui HE, Wanxin JIA, Jing ZHAO, Wanqin JIN. Poly(ethylene oxide)/crown ether blend membrane and performance for CO2 separation[J]. CIESC Journal, 2025, 76(9): 4862-4871.
张建民, 何美贵, 贾万鑫, 赵静, 金万勤. 聚氧化乙烯/冠醚共混膜及其二氧化碳分离性能[J]. 化工学报, 2025, 76(9): 4862-4871.
Add to citation manager EndNote|Ris|BibTeX
| 膜 | w | Tg/℃ | Tc/℃ | Tm1/℃ | Tm2/℃ | ΔHm/(J/g) | Xc/% |
|---|---|---|---|---|---|---|---|
| PEO | 0 | -47.57 | — | — | — | — | — |
| PEO/C6(20) | 0.167 | -51.79 | — | — | — | — | — |
| PEO/C6(40) | 0.286 | -54.05 | — | — | — | — | — |
| PEO/C6(60) | 0.375 | -55.62 | -5.7 | 6.58 | 20.64 | 6.89 | 4.22 |
| PEO/C6(80) | 0.444 | -57.03 | -6.02 | 7.35 | 16.73 | 18.03 | 11.03 |
| PEO/C6(100) | 0.500 | -58.67 | -9.17 | — | 15.38 | 34.11 | 20.88 |
Table 1 Tg, Tc, Tm, ΔHm and Xc of PEO and PEO/C6 membranes
| 膜 | w | Tg/℃ | Tc/℃ | Tm1/℃ | Tm2/℃ | ΔHm/(J/g) | Xc/% |
|---|---|---|---|---|---|---|---|
| PEO | 0 | -47.57 | — | — | — | — | — |
| PEO/C6(20) | 0.167 | -51.79 | — | — | — | — | — |
| PEO/C6(40) | 0.286 | -54.05 | — | — | — | — | — |
| PEO/C6(60) | 0.375 | -55.62 | -5.7 | 6.58 | 20.64 | 6.89 | 4.22 |
| PEO/C6(80) | 0.444 | -57.03 | -6.02 | 7.35 | 16.73 | 18.03 | 11.03 |
| PEO/C6(100) | 0.500 | -58.67 | -9.17 | — | 15.38 | 34.11 | 20.88 |
Fig.10 (a) Long-term stability test of PEO/C6(100) membranes (mixed gas, CO2∶N2 = 15∶85, volume ratio); (b) Comparison of CO2/N2 separation performance of PEO/C6(100) membranes with reported PEO-based polymer membranes
| [1] | Wei Y M, Kang J N, Liu L C, et al. A proposed global layout of carbon capture and storage in line with a 2℃ climate target[J]. Nature Climate Change, 2021, 11: 112-118. |
| [2] | Liang C Z, Chung T S, Lai J Y. A review of polymeric composite membranes for gas separation and energy production[J]. Progress in Polymer Science, 2019, 97: 101141. |
| [3] | Hu C C, Lin C H, Chiao Y H, et al. Mixing effect of ligand on carbon dioxide capture behavior of zeolitic imidazolate framework/poly(amide-b-ethylene oxide) mixed matrix membranes[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15341-15348. |
| [4] | Lilleby Helberg R M, Dai Z D, Ansaloni L, et al. PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: synergistic enhancement of CO2 separation performance[J]. Green Energy & Environment, 2020, 5(1): 59-68. |
| [5] | Roussanaly S, Anantharaman R, Lindqvist K, et al. Membrane properties required for post-combustion CO2 capture at coal-fired power plants[J]. Journal of Membrane Science, 2016, 511: 250-264. |
| [6] | Han H, Scofield J M P, Gurr P A, et al. Ultrathin membrane with robust and superior CO2 permeance by precision control of multilayer structures[J]. Chemical Engineering Journal, 2023, 462: 142087. |
| [7] | Liu S L, Shao L, Chua M L, et al. Recent progress in the design of advanced PEO-containing membranes for CO2 removal[J]. Progress in Polymer Science, 2013, 38(7): 1089-1120. |
| [8] | Zhu B, Jiang X, He S S, et al. Rational design of poly(ethylene oxide) based membranes for sustainable CO2 capture[J]. Journal of Materials Chemistry A, 2020, 8(46): 24233-24252. |
| [9] | Kazarian S G, Vincent M F, Bright F V, et al. Specific intermolecular interaction of carbon dioxide with polymers[J]. Journal of the American Chemical Society, 1996, 118(7): 1729-1736. |
| [10] | Lin H, Freeman B D. Gas solubility, diffusivity and permeability in poly(ethylene oxide)[J]. Journal of Membrane Science, 2004, 239(1): 105-117. |
| [11] | Shao L, Quan S, Cheng X Q, et al. Developing cross-linked poly(ethylene oxide) membrane by the novel reaction system for H2 purification[J]. International Journal of Hydrogen Energy, 2013, 38(12): 5122-5132. |
| [12] | Chen Y, He M G, Zhang J M, et al. Design of ultrathin cross-linked poly(ethylene oxide) selective layer for high-performance CO2 capture[J]. Chemical Engineering Journal, 2023, 478: 147530. |
| [13] | Quan S, Tang Y P, Wang Z X, et al. PEG-imbedded PEO membrane developed by a novel highly efficient strategy toward superior gas transport performance[J]. Macromolecular Rapid Communications, 2015, 36(5): 490-495. |
| [14] | Li S W, Jiang X, Yang Q, et al. Effects of amino functionalized polyhedral oligomeric silsesquioxanes on cross-linked poly(ethylene oxide) membranes for highly-efficient CO2 separation[J]. Chemical Engineering Research and Design, 2017, 122: 280-288. |
| [15] | Kargari A, Rezaeinia S. State-of-the-art modification of polymeric membranes by PEO and PEG for carbon dioxide separation: a review of the current status and future perspectives[J]. Journal of Industrial and Engineering Chemistry, 2020, 84: 1-22. |
| [16] | Amooghin A E, Sanaeepur H, Moghadassi A, et al. Modification of ABS membrane by PEG for capturing carbon dioxide from CO2/N2 streams[J]. Separation Science and Technology, 2010, 45(10): 1385-1394. |
| [17] | Hamrahi Z, Kargari A. Modification of polycarbonate membrane by polyethylene glycol for CO2/CH4 separation[J]. Separation Science and Technology, 2017, 52(3): 544-556. |
| [18] | Castro-Muñoz R, Fíla V, Martin-Gil V, et al. Enhanced CO2 permeability in Matrimid®5218 mixed matrix membranes for separating binary CO2/CH4 mixtures[J]. Separation and Purification Technology, 2019, 210: 553-562. |
| [19] | Car A, Stropnik C, Yave W, et al. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation[J]. Journal of Membrane Science, 2008, 307(1): 88-95. |
| [20] | Wu X M, Zhang Q G, Lin P J, et al. Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol[J]. Journal of Membrane Science, 2015, 493: 147-155. |
| [21] | Sadeghi M, Chenar M P, Rahimian M, et al. Gas permeation properties of polyvinylchloride/polyethyleneglycol blend membranes[J]. Journal of Applied Polymer Science, 2008, 110(2): 1093-1098. |
| [22] | Ben Hamouda S, Roudesli S. Transport properties of PVA/PEI/PEG composite membranes: sorption and permeation characterizations[J]. Central European Journal of Chemistry, 2008, 6(4): 634-640. |
| [23] | Huang L, Liu J Y, Lin H Q. Thermally stable, homogeneous blends of cross-linked poly(ethylene oxide) and crown ethers with enhanced CO2 permeability[J]. Journal of Membrane Science, 2020, 610: 118253. |
| [24] | Luan B, Elmegreen B, Kuroda M A, et al. Crown nanopores in graphene for CO2 capture and filtration[J]. ACS Nano, 2022, 16(4): 6274-6281. |
| [25] | Wu D Y, Yi C H, Wang Y X, et al. Preparation and gas permeation of crown ether-containing co-polyimide with enhanced CO2 selectivity[J]. Journal of Membrane Science, 2018, 551: 191-203. |
| [26] | Houben M, Borneman Z, Nijmeijer K. Plasticization behavior of crown-ether containing polyimide membranes for the separation of CO2 [J]. Separation and Purification Technology, 2021, 255: 117307. |
| [27] | Zhang Z N, Zhu H, Jin H, et al. Restricting linker rotation in nanocages of ZIF-8 membranes using crown ether “molecular locks” for enhanced propylene/propane separation[J]. Angewandte Chemie International Edition, 2025, 64(3): e202415023. |
| [28] | Zheng S, Bi S, Fu Y B, et al. 3D crown ether covalent organic framework as interphase layer toward high-performance lithium metal batteries[J]. Advanced Materials, 2024, 36(21): 2313076. |
| [29] | Liu Z C, Nalluri S K M, Stoddart J F. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes[J]. Chemical Society Reviews, 2017, 46(9): 2459-2478. |
| [30] | Li H W, Wang Y, Li T Y, et al. Nanofiltration membrane with crown ether as exclusive Li+ transport channels achieving efficient extraction of lithium from salt lake brine[J]. Chemical Engineering Journal, 2022, 438: 135658. |
| [31] | Jiang X, He S S, Li S W, et al. Penetrating chains mimicking plant root branching to build mechanically robust, ultra-stable CO2-philic membranes for superior carbon capture[J]. Journal of Materials Chemistry A, 2019, 7(28): 16704-16711. |
| [32] | Zhu B, He S S, Wu Y D, et al. One-step synthesis of structurally stable CO2-philic membranes with ultra-high PEO loading for enhanced carbon capture[J]. Engineering, 2023, 26: 220-228. |
| [33] | Sun W S, Yin M J, Zhang W H, et al. Tailor-made microstructures lead to high-performance robust PEO membrane for CO2 capture via green fabrication technique[J]. Green Energy & Environment, 2023, 8(5): 1389-1397. |
| [34] | Dai Z D, Deng L Y. Membranes for CO2 capture and separation: progress in research and development for industrial applications[J]. Separation and Purification Technology, 2024, 335: 126022. |
| [35] | Li S, Chang S M, Yin M J, et al. Build up ‘highway’ in membrane via solvothermal annealing for high-efficient CO2 capture[J]. Journal of Membrane Science, 2022, 652: 120444. |
| [36] | Zhu B, Yang Y, Wang K F, et al. Chemical topology molecular engineering of CO2-philic membranes toward highly efficient carbon capture[J]. Journal of Membrane Science, 2023, 685: 121917. |
| [37] | Hu L Q, Liu J Y, Zhu L X, et al. Highly permeable mixed matrix materials comprising ZIF-8 nanoparticles in rubbery amorphous poly(ethylene oxide) for CO2 capture[J]. Separation and Purification Technology, 2018, 205: 58-65. |
| [38] | Lin H Q, Freeman B D. Materials selection guidelines for membranes that remove CO2 from gas mixtures[J]. Journal of Molecular Structure, 2005, 739(1/2/3): 57-74. |
| [39] | Krevelen D W V. Properties of Polymers[M]. Nuenhuis K T. 4th. Oxford: Elsevier’s Science & Technology Rights Department, 2009: 72-76. |
| [40] | Kim N U, Park B J, Park M S, et al. Semi-interpenetrating polymer network membranes based on a self-crosslinkable comb copolymer for CO2 capture[J]. Chemical Engineering Journal, 2019, 360: 1468-1476. |
| [41] | Liu J Y, Zhang G Y, Clark K, et al. Maximizing ether oxygen content in polymers for membrane CO2 removal from natural gas[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10933-10940. |
| [42] | Quan S, Li S W, Wang Z X, et al. A bio-inspired CO2-philic network membrane for enhanced sustainable gas separation[J]. Journal of Materials Chemistry A, 2015, 3(26): 13758-13766. |
| [43] | Li S W, Jiang X, Yang X B, et al. Nanoporous framework “reservoir” maximizing low-molecular-weight enhancer impregnation into CO2-philic membranes for highly-efficient CO2 capture[J]. Journal of Membrane Science, 2019, 570: 278-285. |
| [44] | Liu J Y, Zhang S Z, Jiang D E, et al. Highly polar but amorphous polymers with robust membrane CO2/N2 separation performance[J]. Joule, 2019, 3(8): 1881-1894. |
| [1] | Ziqing ZANG, Xiuzhen LI, Yingying TAN, Xiaoqing LIU. Investigation on effect of fractionation on performance of two-stage separation-based auto-cascade refrigeration cycle [J]. CIESC Journal, 2025, 76(S1): 17-25. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
| [4] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [5] | Xingliang PEI, Cuiping YE, Yingli PEI, Wenying LI. Selective adsorption and separation of xylene isomers by alkali-modified MIL-53(Cr) [J]. CIESC Journal, 2025, 76(S1): 258-267. |
| [6] | Yinlong LI, Guoqiang LIU, Gang YAN. Perfromance assessment of auto-cascade cycle integrating fractionation and flash separation [J]. CIESC Journal, 2025, 76(S1): 26-35. |
| [7] | Fanchen KONG, Shuo ZHANG, Mingsheng TANG, Huiming ZOU, Zhouhang HU, Changqing TIAN. Simulation of gas bearings in carbon dioxide linear compressors [J]. CIESC Journal, 2025, 76(S1): 281-288. |
| [8] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [9] | Wenlong LI, Cheng CHANG, Xiaolin WU, Zhongli JI. Research on liquid distribution characteristics and pressure drop evolution in oil-water coalescing filters [J]. CIESC Journal, 2025, 76(9): 4850-4861. |
| [10] | Yifei WANG, Yuxing LI, Xin OUYANG, Xuefeng ZHAO, Lan MENG, Qihui HU, Buze YIN, Yaqi GUO. Numerical calculation of CO2 pipeline fracture propagation based on crack tip decompression characteristics [J]. CIESC Journal, 2025, 76(9): 4683-4693. |
| [11] | Xu GUO, Jining JIA, Kejian YAO. Modeling of batch distillation process based on optimized CNN-BiLSTM neural network [J]. CIESC Journal, 2025, 76(9): 4613-4629. |
| [12] | Jie WANG, Qucheng LIN, Xianming ZHANG. Global optimization of mixed gas multistage membrane separation system based on decomposition algorithm [J]. CIESC Journal, 2025, 76(9): 4670-4682. |
| [13] | Yu WANG, Yingnan FENG, Tao WANG, Zhiping ZHAO. Constructing nano-composite nanofiltration membranes by in-situ growth: membrane preparation and application [J]. CIESC Journal, 2025, 76(9): 4723-4736. |
| [14] | Zhihong CHEN, Jiawei WU, Xiaoling LOU, Junxian YUN. Recent advances in machine learning for biomanufacturing of chemicals [J]. CIESC Journal, 2025, 76(8): 3789-3804. |
| [15] | Yuntao ZHOU, Lifeng CUI, Jie ZHANG, Fuhong YU, Xingang LI, Ye TIAN. Ga2O3 modified CuCeO catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2025, 76(8): 4042-4051. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||