CIESC Journal ›› 2013, Vol. 64 ›› Issue (12): 4427-4433.DOI: 10.3969/j.issn.0438-1157.2013.12.024

Previous Articles     Next Articles

Improved group search optimizer and application on gasoline blending process

YUAN Qi, CHENG Hui, ZHONG Weimin, QIAN Feng   

  1. Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
  • Received:2013-05-31 Revised:2013-07-20 Online:2013-12-05 Published:2013-12-05
  • Supported by:

    supported by the National Basic Research Program of China (2012CB720500),the National Natural Science Foundation of China (U1162202,61174118,61222303),the High-tech Research and Development Program of China (2013AA040701),the Fundamental Research Funds for the Central Universities and Shanghai Leading Academic Discipline Project (B504).

全局群搜索优化算法及其在汽油调合中的应用

袁奇, 程辉, 钟伟民, 钱锋   

  1. 华东理工大学化工过程先进控制和优化技术教育部重点实验室, 上海 200237
  • 通讯作者: 程辉
  • 作者简介:袁奇(1990- ),男,硕士研究生。
  • 基金资助:

    国家重点基础研究发展计划项目(2012CB720500);国家自然科学基金项目(U1162202,61174118,61222303);国家高技术研究发展计划项目(2013AA040701);中央高校基本科研业务费;上海市重点学科建设项目(B504)。

Abstract: The group search optimizer (GSO),which is inspired by animal searching behaviour and group living theory,is a novel optimization algorithm.In this paper,a novel group search optimizer called global group search optimizer (GGSO) is proposed to improve the performance of standard GSO.In the optimizing,the initial population of GGSO is generated uniformly in the search space.Early in the algorithm,GSO evolutionary strategy is retained and PSO evolutionary strategy is adopted during the later computation period.The main approaches included introducing crossover operation in each iteration to increase the diversity of individuals,breaching the restrictions of local optimization points with a new chaotic disturbance mechanism and mutation operation during the later computation period.Tests are carried out through four standard test functions on GSO,LDWPSO and GGSO independently,the results shows that GGSO has a preferable convergence rate and accuracy.The application of gasoline blending online shows that GGSO is effective.

Key words: algorithm, optimization, chaos, group search optimizer, gasoline blending optimization

摘要: 汽油调合配比生产优化是一种非线性约束的多峰优化问题。针对一般群智能优化算法在解决此类优化中易陷于局部最优解,提出了一种改进的群搜索优化算法——全局群搜索优化算法(GGSO)。该算法采用混沌机制初始化粒子在解空间内均匀分布;在算法前期,保留GSO的追随者进化策略,以保证算法的收敛速度。在算法后期,对追随者引入速度更新和个体最优,以保证算法的收敛精度;在粒子陷入局部极值时,对追随者和游荡者引入一种新的交叉、变异机制和自适应混沌扰动机制,以保证粒子跳出局部极值,提高算法全局寻优性能。分别用4个标准测试函数对优化算法进行测试,结果表明:GGSO算法与标准GSO、线性递减惯性权重粒子群算法(LDWPSO)比较,收敛速度和全局寻优性能有明显优势。汽油在线调合优化实例应用表明:该算法有较快的收敛速度,能够较准确地寻得全局最优。

关键词: 算法, 优化, 混沌, 群搜索优化算法, 汽油调合优化

CLC Number: