[1] |
Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems [M]. London: Springer-Verlag, 2001
|
[2] |
Xu Xianzhen (许仙珍), Xie Lei (谢磊), Wang Shuqing (王树青). Multi-mode process monitoring method based on PCA mixture model [J]. CIESC Journal (化工学报), 2011, 62 (3): 743-752
|
[3] |
Qin S J. Statistical process monitoring: basics and beyond [J]. J. Chemom., 2003, 17 (8/9): 480-502
|
[4] |
Yue H, Qin S J. Reconstruction based fault identification using a combined index [J]. Ind. Eng. Chem. Res., 2001, 40 (20): 4403-4414
|
[5] |
Kim D, Lee I B. Process monitoring based on probabilistic PCA [J]. Chemom. Intell. Lab. Syst., 2003, 67 (2): 109-123
|
[6] |
Ge Z Q, Song Z H. Kernel generalization of PPCA for nonlinear probabilistic monitoring [J]. Ind. Eng. Chem. Res., 2010, 49 (22): 11832-11836
|
[7] |
Hu Y, Wang L, Ma H H, Shi H B. Online nonlinear process monitoring using kernel partial least squares [J]. Chinese Journal of Chemical Engineering, 2011, 62 (9): 2555-2561
|
[8] |
Ge Z Q, Yang C J, Song Z H. Improved kernel-PCA based monitoring approach for nonlinear processes [J]. Chem. Eng. Sci., 2009, 64 (9): 2245-2255
|
[9] |
Vapnik V N. The Nature of Statistical Learning Theory [M]. New York: Springer, 2000
|
[10] |
Jiang Q C, Yan X F. Statistical monitoring of chemical processes based on sensitive kernel principal components [J]. Chinese J. Chem. Eng., 2013, 21 (6): 633-643
|
[11] |
Deng X G, Tian X M, Chen S. Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis [J]. Chemom. Intell. Lab. Syst., 2013, 127: 195-209
|
[12] |
Schölkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigen-value problem [J]. Neural Comput., 1998, 10 (5): 1299-1319
|
[13] |
Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis [J]. Chem. Eng. Sci., 2004, 59 (1): 223-234
|
[14] |
Lu N, Gao F R, Wang F L. Sub-PCA modeling and on-line monitoring strategy for batch processes [J]. AIChE J., 2004, 50 (1): 255-259
|
[15] |
Tipping M E, Bishop C M. Probabilistic principal component analysis [J]. J. R. Stat. Soc., 1999, 61 (3): 611-622
|
[16] |
Zhou S H. Probabilistic analysis of kernel principal components: mixture modeling, and classification [R]. College Park, MD: University of Maryland, 2003
|
[17] |
Duda R O, Hart P E, Stork D G. Pattern Classification [M]. 2nd ed .New York: Wiley, 2001
|
[18] |
Chen T, Sun Y. Probabilistic contribution analysis for statistical process monitoring: a missing variable approach [J]. Control. Eng. Pract., 2009, 17 (4): 469-477
|
[19] |
Downs J J, Vogel E F. Plant-wide industrial process control problem [J]. Comput. Chem. Eng., 1993, 17 (3): 245-255
|
[20] |
Ricker N L. Decentralized control of the Tennessee Eastman challenge process [J]. J. Process Control, 1996, 6 (4): 205-221
|