CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1616-1626.DOI: 10.11949/0438-1157.20200793
• Process system engineering • Previous Articles Next Articles
LI Yuan1(),YANG Dongsheng1,ZHAO Liying1,ZHANG Cheng2
Received:
2020-06-22
Revised:
2020-07-23
Online:
2021-03-05
Published:
2021-03-05
Contact:
LI Yuan
通讯作者:
李元
作者简介:
李元(1964—),女,博士,教授,基金资助:
CLC Number:
LI Yuan, YANG Dongsheng, ZHAO Liying, ZHANG Cheng. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis[J]. CIESC Journal, 2021, 72(3): 1616-1626.
李元, 杨东昇, 赵丽颖, 张成. 层次变分高斯混合模型与主多项式分析的故障检测策略[J]. 化工学报, 2021, 72(3): 1616-1626.
Add to citation manager EndNote|Ris|BibTeX
方法 | 故障检测率 | |
---|---|---|
T2 | SPE | |
PCA | 0.06 | 0.47 |
PPA | 0.24 | 0.56 |
HVGMM-PPA | 0.33 | 0.97 |
Table 1 Fault detection rates of three methods
方法 | 故障检测率 | |
---|---|---|
T2 | SPE | |
PCA | 0.06 | 0.47 |
PPA | 0.24 | 0.56 |
HVGMM-PPA | 0.33 | 0.97 |
模态 | G/H比例 | 生产率 |
---|---|---|
1 | 50/50 | 7038 kg/h G 和7038 kg/h H |
2 | 10/90 | 1408 kg/h G 和12669 kg/h H |
3 | 90/10 | 10000 kg/h G 和1111 kg/h H |
4 | 50/50 | Maximum |
5 | 10/90 | Maximum |
6 | 90/10 | Maximum |
Table 2 Six operation conditions of TE process
模态 | G/H比例 | 生产率 |
---|---|---|
1 | 50/50 | 7038 kg/h G 和7038 kg/h H |
2 | 10/90 | 1408 kg/h G 和12669 kg/h H |
3 | 90/10 | 10000 kg/h G 和1111 kg/h H |
4 | 50/50 | Maximum |
5 | 10/90 | Maximum |
6 | 90/10 | Maximum |
No. | 变量 | No. | 变量 |
---|---|---|---|
X1 | A物料流量 | X18 | 汽提塔温度 |
X2 | D物料流量 | X19 | 汽提塔蒸汽流量 |
X3 | E物料流量 | X20 | 压缩机工作功率 |
X4 | A、C混合物料流量 | X21 | 反应器冷却水出口温度 |
X5 | 回收流量 | X22 | 分离器冷却水出口温度 |
X6 | 反应器进料率 | X23 | D流量 |
X7 | 反应器压力 | X24 | E流量 |
X8 | 反应器液位 | X25 | A流量 |
X9 | 反应器温度 | X26 | AC混合流量 |
X10 | 放空率 | X27 | 压缩循环阀控制量 |
X11 | 产品分离器温度 | X28 | 放空阀控制量 |
X12 | 产品分离器液位 | X29 | 分离器液体流量 |
X13 | 产品分离器压力 | X30 | 汽提塔液体流量 |
X14 | 产品分离器出口流量 | X31 | 汽提塔蒸汽阀控制量 |
X15 | 汽提塔液位 | X32 | 反应器冷凝水流量 |
X16 | 汽提塔压力 | X33 | 冷凝器冷却水流量 |
X17 | 汽提塔出口流量 |
Table 3 Process variables using in fault detection
No. | 变量 | No. | 变量 |
---|---|---|---|
X1 | A物料流量 | X18 | 汽提塔温度 |
X2 | D物料流量 | X19 | 汽提塔蒸汽流量 |
X3 | E物料流量 | X20 | 压缩机工作功率 |
X4 | A、C混合物料流量 | X21 | 反应器冷却水出口温度 |
X5 | 回收流量 | X22 | 分离器冷却水出口温度 |
X6 | 反应器进料率 | X23 | D流量 |
X7 | 反应器压力 | X24 | E流量 |
X8 | 反应器液位 | X25 | A流量 |
X9 | 反应器温度 | X26 | AC混合流量 |
X10 | 放空率 | X27 | 压缩循环阀控制量 |
X11 | 产品分离器温度 | X28 | 放空阀控制量 |
X12 | 产品分离器液位 | X29 | 分离器液体流量 |
X13 | 产品分离器压力 | X30 | 汽提塔液体流量 |
X14 | 产品分离器出口流量 | X31 | 汽提塔蒸汽阀控制量 |
X15 | 汽提塔液位 | X32 | 反应器冷凝水流量 |
X16 | 汽提塔压力 | X33 | 冷凝器冷却水流量 |
X17 | 汽提塔出口流量 |
No. | PCA | PPA | HVGMM-PPA | |||
---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |
IDV1 | 0.5 | 0.99 | 0.6 | 0.99 | 1 | 1 |
IDV2 | 0.48 | 0.57 | 0.15 | 0.64 | 0.89 | 0.99 |
IDV3 | 0.01 | 0.01 | 0.01 | 0.02 | 0.04 | 0.03 |
IDV4 | 0.5 | 1 | 0.04 | 1 | 0.95 | 1 |
IDV5 | 0.04 | 0.48 | 0.4 | 0.48 | 0.51 | 0.52 |
IDV6 | 0.52 | 1 | 0.98 | 1 | 1 | 1 |
IDV7 | 0.37 | 0.22 | 0.03 | 0.91 | 1 | 1 |
IDV8 | 0.41 | 0.94 | 0.82 | 0.93 | 0.98 | 0.99 |
IDV9 | 0.01 | 0.04 | 0.03 | 0.05 | 0.1 | 0.13 |
IDV10 | 0.02 | 0.04 | 0.04 | 0.04 | 0.72 | 0.92 |
IDV11 | 0.19 | 0.45 | 0.12 | 0.46 | 0.71 | 0.93 |
IDV12 | 0.16 | 0.51 | 0.47 | 0.53 | 0.68 | 0.72 |
IDV13 | 0.3 | 0.9 | 0.85 | 0.85 | 0.93 | 0.93 |
IDV14 | 0.38 | 0.67 | 0.02 | 0.79 | 0.71 | 1 |
IDV15 | 0.02 | 0.01 | 0.01 | 0.01 | 0.04 | 0.05 |
IDV16 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.03 |
IDV17 | 0.21 | 0.69 | 0.08 | 0.74 | 0.87 | 0.94 |
IDV18 | 0.2 | 0.49 | 0.47 | 0.44 | 0.76 | 0.86 |
IDV19 | 0.03 | 0.5 | 0.26 | 0.35 | 0.94 | 1 |
IDV20 | 0.29 | 0.84 | 0.72 | 0.79 | 0.89 | 0.95 |
IDV21 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 |
Table 4 Fault detection rates of TE process for three methods
No. | PCA | PPA | HVGMM-PPA | |||
---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |
IDV1 | 0.5 | 0.99 | 0.6 | 0.99 | 1 | 1 |
IDV2 | 0.48 | 0.57 | 0.15 | 0.64 | 0.89 | 0.99 |
IDV3 | 0.01 | 0.01 | 0.01 | 0.02 | 0.04 | 0.03 |
IDV4 | 0.5 | 1 | 0.04 | 1 | 0.95 | 1 |
IDV5 | 0.04 | 0.48 | 0.4 | 0.48 | 0.51 | 0.52 |
IDV6 | 0.52 | 1 | 0.98 | 1 | 1 | 1 |
IDV7 | 0.37 | 0.22 | 0.03 | 0.91 | 1 | 1 |
IDV8 | 0.41 | 0.94 | 0.82 | 0.93 | 0.98 | 0.99 |
IDV9 | 0.01 | 0.04 | 0.03 | 0.05 | 0.1 | 0.13 |
IDV10 | 0.02 | 0.04 | 0.04 | 0.04 | 0.72 | 0.92 |
IDV11 | 0.19 | 0.45 | 0.12 | 0.46 | 0.71 | 0.93 |
IDV12 | 0.16 | 0.51 | 0.47 | 0.53 | 0.68 | 0.72 |
IDV13 | 0.3 | 0.9 | 0.85 | 0.85 | 0.93 | 0.93 |
IDV14 | 0.38 | 0.67 | 0.02 | 0.79 | 0.71 | 1 |
IDV15 | 0.02 | 0.01 | 0.01 | 0.01 | 0.04 | 0.05 |
IDV16 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.03 |
IDV17 | 0.21 | 0.69 | 0.08 | 0.74 | 0.87 | 0.94 |
IDV18 | 0.2 | 0.49 | 0.47 | 0.44 | 0.76 | 0.86 |
IDV19 | 0.03 | 0.5 | 0.26 | 0.35 | 0.94 | 1 |
IDV20 | 0.29 | 0.84 | 0.72 | 0.79 | 0.89 | 0.95 |
IDV21 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 |
1 | Zhang X, Kano M, Tani M, et al. Prediction and causal analysis of defects in steel products: handling nonnegative and highly overdispersed count data[J]. Control Engineering Practice, 2020, 95: 104258-104266. |
2 | Ge Z Q, Song Z H, Gao F R. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562. |
3 | Tong C D, Palazoglu A, Yan X F. An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding[J]. Journal of Process Control, 2013, 23(10): 1497-1507. |
4 | 王光, 孙程远, 尹珅. 基于动态全主成分回归质量相关的故障检测[J]. 信息与控制, 2017, 46(6): 671-676. |
Wang G, Sun C Y, Yin S. Quality-related fault detection approach based on dynamic total principal component regression[J]. Information and Control, 2017, 46(6): 671-676. | |
5 | Wang Y Q, Si Y B, Huang B, et al. Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms 2008—2017[J]. The Canadian Journal of Chemical Engineering, 2018, 96(10): 2073-2085. |
6 | Li Y, Zhang X M. Diffusion maps based k-nearest-neighbor rule technique for semiconductor manufacturing process fault detection[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 136(15): 47-57. |
7 | Li Y, Zhang X M. Variable moving windows based non-Gaussian dissimilarity analysis technique for batch processes fault detection and diagnosis[J]. The Canadian Journal of Chemical Engineering, 2015, 93(4): 689-707. |
8 | Wang G Z, Liu J C, Zhang Y W, et al. A novel multi-mode data processing method and its application in industrial process monitoring[J]. Journal of Chemometrics, 2015, 29(2): 126-138. |
9 | Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space[J]. Journal of Machine Learning Research, 2001, 2(3): 97-123. |
10 | Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234. |
11 | Cao L J, Chua K S, Chong W K, et al. A comparison of PCA KPCA and ICA for dimensionality reduction in support vector machine[J]. Neurocomputing, 2003, 55(1/2): 321-336. |
12 | Zhang Y W, Li S, Hu Z Y. Improved multi-scale kernel principal component analysis and its application for fault detection[J]. Chemical Engineering Research & Design, 2012, 90(9): 1271-1280. |
13 | Zhang X M, Kano M, Li Y. Principal polynomial analysis for fault detection and diagnosis of industrial processes[J]. IEEE Access, 2018, 6: 52298-52307. |
14 | Zhang X M, Li Y. Multiway principal polynomial analysis for semiconductor manufacturing process fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 181(8): 29-35. |
15 | Laparra V, Jiménez S, Tuia D, et al. Principal polynomial analysis[J]. International Journal of Neural Systems, 2014, 24(7): 1440007. |
16 | Laparra V, Tuia D, Jiménez S, et al. Nonlinear data description with principal polynomial analysis[J]. IEEE International Workshop on Machine Learning for Signal Processing MLSP, 2012, 23(26): 1-6. |
17 | 马贺贺, 胡益, 侍洪波. 基于距离空间统计量分析的多模态过程无监督故障检测[J]. 化工学报, 2012, 63(3): 873-880. |
Ma H H, Hu Y, Shi H B. Unsupervised fault detection for multimode processes using distance space statistics analysis[J]. CIESC Journal, 2012, 63(3): 873-880. | |
18 | 郭小萍, 刘诗洋, 李元. 基于稀疏残差距离的多工况过程故障检测方法研究[J]. 自动化学报, 2019, 45(3): 617-625. |
Guo X P, Liu S Y, Li Y. Fault detection of multi-mode processes employing sparse residual distance[J]. Acta Automatica Sinica, 2019, 45(3): 617-625. | |
19 | 王静, 胡益, 侍洪波. 基于GMM的间歇过程故障检测[J]. 自动化学报, 2015, 41(5): 899-905. |
Wang J, Hu Y, Shi H B. Fault detection for batch processes based on Gaussian mixture model[J]. Acta Automatica Sinica, 2015, 41(5): 899-905. | |
20 | Zhu J L, Ge Z Q, Song Z H. Distributed Gaussian mixture model for monitoring plant-wide processes with multiple operating modes[J]. IFAC Journal of Systems and Control, 2018, 6: 1-15. |
21 | Yu J B. Fault detection using principal components-based Gaussian mixture model for semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2011, 24(3): 432-444. |
22 | Chen G J, Ge Z Q. Hierarchical Bayesian network modeling framework for large-scale process monitoring and decision making[J]. IEEE Transactions on Control Systems Technology, 2020, 28(2): 671-679. |
23 | Figueiredo M, Jain A. Unsupervised learning of finite mixture models[J]. IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24(3): 381-396. |
24 | Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AIChE Journal, 2008, 54(7): 1811-1829. |
25 | Nasios N, Bors A. Variational learning for Gaussian mixture models[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(4): 849-862. |
26 | Blei D, Kucukelbir A, McAuliffe J. Variational inference a review for statisticians[J]. Journal of the American Statistical Association, 2017, 112(518): 859-877. |
27 | Pekhovsky T, Lokhanova A. Variational Bayesian model selection for GMM-speaker verification using universal background model[C]//12th Annual Conference of the International Speech Communication Association. 2011: 2705-2708. |
28 | Ma Z Y, Leijon A. Bayesian estimation of beta mixture models with variational inference[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2160-2173. |
29 | Fox C, Roberts S J. A tutorial on variational Bayesian inference[J]. Artificial Intelligence Review, 2012, 38(2): 85-95. |
30 | Jiang Q C, Yan X F. Multimode process monitoring using variational Bayesian inference and canonical correlation analysis[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1814-1824. |
31 | Ge Z, Song Z H. Multimode process monitoring based on Bayesian method[J]. Journal of Chemometrics, 2009, 23(12): 636-650. |
32 | Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255. |
[1] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[4] | Guang WANG, Fashun SHAN, Yucheng QIAN, Jianfang JIAO. Incipient fault detection method for chemical process based on ensemble learning transfer entropy [J]. CIESC Journal, 2023, 74(7): 2967-2978. |
[5] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[6] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[7] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[8] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[9] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[10] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[11] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[12] | Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA [J]. CIESC Journal, 2022, 73(9): 3963-3972. |
[13] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[14] | Jing YANG, Zhenkang LIN, Jun TANG, Cheng FAN, Kening SUN. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems [J]. CIESC Journal, 2022, 73(8): 3394-3405. |
[15] | Jinyu GUO, Zhe WANG, Yuan LI. Fault detection method based on kernel entropy independent component analysis [J]. CIESC Journal, 2022, 73(8): 3647-3658. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||