CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1616-1626.DOI: 10.11949/0438-1157.20200793

• Process system engineering • Previous Articles     Next Articles

Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis

LI Yuan1(),YANG Dongsheng1,ZHAO Liying1,ZHANG Cheng2   

  1. 1.College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
    2.Department of Science, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
  • Received:2020-06-22 Revised:2020-07-23 Online:2021-03-05 Published:2021-03-05
  • Contact: LI Yuan

层次变分高斯混合模型与主多项式分析的故障检测策略

李元1(),杨东昇1,赵丽颖1,张成2   

  1. 1.沈阳化工大学信息工程学院,辽宁 沈阳 110142
    2.沈阳化工大学理学院,辽宁 沈阳 110142
  • 通讯作者: 李元
  • 作者简介:李元(1964—),女,博士,教授,li-yuan@mail.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(61673279)

Abstract:

Aiming at the problem that the number of modes is difficult to determine in multi-modal industrial processes, a hierarchical variational Gaussian mixture model (HVGMM) is proposed. Based on this, principal polynomial analysis (PPA) was used for multimode nonlinear processes fault detection. Firstly, the variational Bayesian Gaussian mixture model (VBGMM) was used as the initial model to decompose the process data to obtain the initial number of condition modes, and the process was decomposed into sub-blocks according to the initial number of modes. Secondly, the VBGMM containing multiple local models was used to decompose each sub-block into subsidiary sub-blocks, and the information such as mean and precision matrix of subsidiary sub-blocks was used to reconstruct the VBGMM. After that, the reconstructed VBGMM was used again as the initial model to decompose the original process data, and the above steps are repeated until the reconstructed VBGMM cannot decompose each sub-block. Finally, multiple local PPA models were established in each sub-block, and T2 and SPEstatistics were calculated in each local model for fault detection. Through a numerical example and the Tennessee Eastman (TE) process, the simulation result demonstrates that HVGMM-PPA outperformed conventional PCA and PPA techniques in the monitoring rate.

Key words: principal component analysis, variational Bayesian Gaussian mixture model, fault detection, process control, multimode processes, parameter estimation

摘要:

针对多模态工业过程中模态数量难以确定问题,提出一种层次变分高斯混合模型(hierarchical variational Gaussian mixture model, HVGMM)。在此基础上,使用主多项式分析(principal polynomial analysis, PPA)用于多模态非线性过程故障检测。首先,变分贝叶斯高斯混合模型(variational Bayesian Gaussian mixture model, VBGMM)作为初始模型用于分解过程数据得到工作模态的初始数量,将过程按初始数量分解为多个子块;其次,应用包含多个局部模型的VBGMM将各子块分解为附属子块,并利用附属子块的均值、精度等信息对VBGMM进行重构;然后,将重构后的VBGMM作为初始模型再次用于分解原始过程数据,重复上述步骤直至重构VBGMM无法分解各子块时停止;最后,分别在各附属子块中建立局部PPA模型,并在每个局部模型中计算T2和SPE统计量进行故障检测。将该方法应用于数值例子和Tennessee Eastman(TE)化工过程,并将仿真结果与主元分析(principal component analysis, PCA)、PPA进行对比,验证了所提出方法的有效性。

关键词: 主元分析, 变分贝叶斯高斯混合模型, 故障检测, 过程控制, 多模态过程, 参数估值

CLC Number: