[1] |
Mehranbod N. A probabilistic approach for sensor fault detection and identification [D]. Philadelphia, USA: Drexel University, 2002
|
[2] |
Hu Y P, Chen H X, Xie J L, Yang X S, Zhou C. Chiller sensor fault detection using a self-adaptive principal component analysis method [J]. Energy and Buildings, 2012, 54: 252-258
|
[3] |
Fu Kechang (付克昌), Dai Liankui (戴连奎), Wu Tiejun (吴铁军). Sensor fault diagnosis approach based on structure optimized SRAMS [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2007, 58 (8): 2045-2050
|
[4] |
Youssef A B, Khil S K, I. Slama-Belkhodja. State observer-based sensor fault detection and isolation, and fault tolerant control of a single-phase PWM rectifier for electric railway traction [J]. IEEE transactions on Power Electronics, 2013, 28 (12): 5842-5853
|
[5] |
Jafar Z, Ehsan S. Robust sensor fault detection based on nonlinear unknown input observer [J]. Measurement, 2014, 48: 355-367
|
[6] |
Jia Runda (贾润达), Mao Zhizhong (毛志忠), Wang Fuli (王福利). KPLS model based product quality control for batch processes [J]. CIESC Journal (化工学报), 2013, 64 (4): 1332-1339
|
[7] |
Pei X D, Yamashita Y, Yoshida M, Matsumoto S. Discriminant analysis and control chart for the fault detection and identification [J]. Computer Aided Chemical Engineering, 2006, 21: 1281-1286
|
[8] |
Hu Yunpeng (胡云鹏), Chen Huanxin (陈焕新), Zhou Cheng (周诚), Yang Xiaoshuang (杨小双),Xu Rongji (徐荣吉). Analysis of sensor fault detection in chiller based on PCA method [J]. CIESC Journal (化工学报), 2012, 63 (S2): 85-88
|
[9] |
Jinane H, Claude D, Demba D. Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis: (Ⅰ) [J]. Signal Processing, 2014, 94 (1): 278-287
|
[10] |
Garcia-Alvarez D, Fuente M J, Sainz G I. Fault detection and isolation in transient states using principal component analysis[J]. Journal of Process Control, 2012, 22 (3): 551-563
|
[11] |
Deng P C, Gui W H, Xie Y F. Latent space transformation based on principal component analysis for adaptive fault detection [J]. Control Theory & Applications, IET, 2010, 4 (11): 2527-2538
|
[12] |
He Ning (何宁). Researches on performance monitoring and fault diagnosis for process industry based on ICA-PCA technique [D]. Hangzhou: Zhejiang University, 2004
|
[13] |
Shi H T, Liu J C, Xue P, Zhang K, Wu Y H, Zhang L X, Tan S. Improved relative-transformation principal component analysis based on mahalanobis distance and its application for fault detection [J]. Acta Automatica Sinica, 2013, 39 (9): 1533-1542
|
[14] |
Wang S W, Cui J T. Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method [J]. Applied Energy, 2005, 82 (3): 197-213
|
[15] |
Joydeb Mukherjee, Venkataramana B Kini, Sunil Menon, Lalitha Eswara. Gas turbine fault detection and diagnosis using nonlinear feature extraction methods//ASME Turbo Expo 2005: Power for Land, Sea, and Air [C]. Reno, Nevada, USA, 2005, 9 (1): 737-743
|
[16] |
Uluyol O, Kyusung Kim, Nwadiogbu E O. Synergistic use of soft computing technologies for fault detection in gas turbine engines [J]. Systems, Man, and Cybernetics, Part C: IEEE Transactions on, Applications and Reviews, 2006, 36 (4): 476-484
|
[17] |
Switzer P, Green A A. Min/max autocorrelation factors for multivariate spatial imagery [R]. Stanford University, Tech. Report No.6, Department of Statistics, 1984
|
[18] |
Nielsen A A. Kernel maximum autocorrelation factor and minimum noise fraction transformations [J]. IEEE Transactions on Image Processing, 2011, 20 (3): 612-624
|
[19] |
Woillez M, Rivoirard J, Petitgas P. Using min/max autocorrelation factors of survey-based indicators to follow the evolution of fish stocks in time [J]. Aquatic Living Resources, 2009, 22 (2): 193-200
|
[20] |
Kresta J, MacGregor, J F, Marlin, T E. Multivariate statistical monitoring of process operating performance [J]. Canadian Journal of Chemical Engineering, 1991, 69: 35-47
|
[21] |
Bowman A W, Azzalini A. Applied Smoothing Techniques for Data Analysis [M]. Oxford: Oxford University Press, 1997
|
[22] |
Bowman A W. An alternative method of cross-validation for the smoothing of density estimates [J]. Biometrika, 1984, 71 (2): 353-360
|
[23] |
Li G, Qin S Z, Ji Y D, Zhou D H. Total PLS based contribution plots for fault diagnosis [J]. Acta Automatica Sinica, 2009, 35 (6): 759-761
|
[24] |
Luyhen W. Process Modeling, Simulation, and Control for Chemical Engineers [M]. New York: McGraw-Hill, 1988
|