CIESC Journal ›› 2015, Vol. 66 ›› Issue (9): 3319-3323.DOI: 10.11949/j.issn.0438-1157.20150927
Previous Articles Next Articles
LUO Lei1, DAI Chengyi1, ZHANG Anfeng1, SONG Chunshan2, GUO Xinwen1
Received:
2015-06-15
Revised:
2015-06-23
Online:
2015-09-05
Published:
2015-09-05
Supported by:
supported by the National Natural Science Foundation of China (21236008).
罗磊1, 代成义1, 张安峰1, 宋春山2, 郭新闻1
通讯作者:
郭新闻
基金资助:
国家自然科学基金重点项目(21236008)。
CLC Number:
LUO Lei, DAI Chengyi, ZHANG Anfeng, SONG Chunshan, GUO Xinwen. Review on catalytic wet peroxide oxidation process[J]. CIESC Journal, 2015, 66(9): 3319-3323.
罗磊, 代成义, 张安峰, 宋春山, 郭新闻. 湿式催化过氧化氢氧化技术综述[J]. 化工学报, 2015, 66(9): 3319-3323.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20150927
[1] | Fenton. Oxidation of tartaric acid in presence of iron [J]. J. Chem. Soc., 1894, 65: 899-910. |
[2] | Eisenhauer H R. Oxidation of phenolic wastes [J]. Water Pollution Control Federation, 1964, 9(36): 1116-1128. |
[3] | Fajerwerg K D H. Wet oxidation of phenol by hydrogen peroxide using heterogeneous catalysis Fe-ZSM-5: a promising catalyst [J]. Appl. Catal. B, 1996, 10(4): L229-L235. |
[4] | Haber F, Weiss J. Über die katalyse des hydroperoxydes [J]. Naturwissenschaften, 1932, 20(51): 948-950. |
[5] | Bray W C, Gorin M H. Ferrylion a compound of tetravalent iron [J]. J. Am. Chem. Soc., 1932, 54(5): 2124-2125. |
[6] | Ensing B, Buda F, Baerends E J. Fenton-like chemistry in water oxidation catalysis by Fe(Ⅲ) and H2O2 [J]. J. Phys. Chem. A, 2003, 107(30): 5722-5731. |
[7] | Hartmann M, Kullmann S, Keller H. Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials [J]. J. Mater. Chem., 2010, 20(41): 9002-9017. |
[8] | Costa R C C, Moura F C C, Ardisson J D, et al. Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides [J]. Appl. Catal. B, 2008, 83(1/2): 131-139. |
[9] | Munoz M, de Pedro Z M, Casas J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation: a review [J]. Appl. Catal. B, 2015, 176/177: 249-265. |
[10] | Satishkumar G, Landau M V, Buzaglo T, et al. Fe/SiO2 heterogeneous Fenton catalyst for continuous catalytic wet peroxide oxidation prepared in-situ by grafting of iron released from LaFeO3 [J]. Appl. Catal. B, 2013, 138/139: 276-284. |
[11] | Yang X, Tian P, Zhang X, et al. The generation of hydroxyl radicals by hydrogen peroxide decomposition on FeOCl/SBA-15 catalysts for phenol degradation [J]. AIChE J., 2015, 61(1): 166-176. |
[12] | Quintanilla A, García-Rodríguez S, Domínguez C M, et al. Supported gold nanoparticle catalysts for wet peroxide oxidation [J]. Appl. Catal. B, 2012, 111/112: 81-89. |
[13] | Lee Y. Hydrogen peroxide decomposition over Ln1-xAxMnO3 (Ln=La or Nd and A=K or Sr) perovskites [J]. Appl. Catal. A, 2001, 215(1/2): 245-256. |
[14] | Li X, Liu X, Xu L, et al. Highly dispersed Pd/PdO/Fe2O3 nanoparticles in SBA-15 for Fenton-like processes: confinement and synergistic effects [J]. Appl. Catal. B, 2015, 165: 79-86. |
[15] | Luo L, Dai C, Zhang A, et al. A facile strategy for enhancing FeCu bimetallic promotion for catalytic phenol oxidation [J]. Catal. Sci. Technol., 2015, 5: 3159-3165. |
[16] | Wei G, Liang X, He Z, et al. Heterogeneous activation of oxone by substituted magnetites Fe3-xMxO4 (Cr, Mn, Co, Ni) for degradation of acid orange II at neutral pH [J]. J. Mol. Catal. A, 2015, 398: 86-94. |
[17] | Liu P, He S, Wei H, et al. Catalytic wet peroxide oxidation of m-cresol over Fe-Ce/Al2O3 catalyst [J]. Chem. Pap., 2015, 69(6): 827-838. |
[18] | Wang Y, Zhao H, Zhao G. Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants [J]. Appl. Catal. B, 2015, 164: 396-406. |
[19] | Chen X, Ma C, Li X, et al. Hierarchical Bi2CuO4 microspheres: hydrothermal synthesis and catalytic performance in wet oxidation of methylene blue [J]. Catal. Commun., 2009, 10(6): 1020-1024. |
[20] | Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites [J]. Appl. Catal. B, 2010, 99(1/2): 1-26. |
[21] | Chen A, Ma X, Sun H. Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites [J]. J. Hazard. Mater., 2008, 156(1/2/3): 568-575. |
[22] | Wang Y, Sun H, Duan X, et al. A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol [J]. Appl. Catal. B, 2015, 172/173: 73-81. |
[23] | Kim S, Ginsbach J W, Lee J Y, et al. Amine oxidative n-dealkylation via cupric hydroperoxide Cu-OOH homolytic cleavage followed by site-specific Fenton chemistry [J]. J. Am. Chem. Soc., 2015, 137(8): 2867-2874. |
[24] | Civan F, Özaltun DH, K?pçak E, et al. The treatment of landfill leachate over Ni/Al2O3 by supercritical water oxidation [J]. J. Supercrit. Fluids, 2015, 100: 7-14. |
[25] | Costa D A S, Oliveira A A S, de Souza P P, et al. The combined effect between Co and carbon nanostructures grown on cordierite monoliths for the removal of organic contaminants from the liquid phase [J]. New. J. Chem., 2015, (39): 1438-1444. |
[26] | Qu J, Shi L, He C, et al. Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue[J]. Carbon, 2014, 66: 485-492. |
[27] | Zhong Y, Liang X, He Z, et al. The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation [J]. Appl. Catal. B, 2014, 150/151: 612-618. |
[28] | Segura Y, Martínez F, Melero J A, et al. Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol [J]. Appl. Catal. B, 2012, 113/114: 100-106. |
[29] | Chu L, Wang J, Dong J, et al. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide [J]. Chemosphere, 2012, 86(4): 409-414. |
[30] | Bokare A D, Choi W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants [J]. Environ. Sci. Technol., 2009, 43(18): 7130-7135. |
[31] | Zhu M, Diao G. Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange [J]. J. Phys. Chem. C, 2011, 115(39): 18923-18934. |
[32] | Hou L, Zhang Q, Jérôme F, et al. Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts [J]. Appl. Catal. B, 2014, 144: 739-749. |
[33] | Luo L, Dai C, Zhang A, et al. Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation [J]. RSC Adv., 2015, 5(37): 29509-29512. |
[34] | Hermanek M, Zboril R, Medrik I, et al. Catalytic efficiency of iron(Ⅲ) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles [J]. J. Am. Chem. Soc., 2007, 129(35): 10929-10936. |
[35] | Moura F, Oliveira G, Araujo M, et al. Highly reactive species formed by interface reaction between Fe0-iron oxides particles: an efficient electron transfer system for environmental applications [J]. Appl. Catal. A, 2006, 307(2): 195-204. |
[36] | Yang Z, Zhang Y, Zhang W, et al. Nanorods of manganese oxides: synthesis, characterization and catalytic application [J]. J. Solid. State. Chem., 2006, 179(3): 679-684. |
[37] | Rhadfi T, Piquemal J, Sicard L, et al. Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts [J]. Appl. Catal. A, 2010, 386(1/2): 132-139. |
[38] | Zhan Y, Li H, Chen Y. Copper hydroxyphosphate as catalyst for the wet hydrogen peroxide oxidation of azo dyes [J]. J. Hazard. Mater., 2010, 180(1/2/3): 481-485. |
[39] | Zhan Y, Zhou X, Fu B, et al. Catalytic wet peroxide oxidation of azo dye (direct blue 15) using solvothermally synthesized copper hydroxide nitrate as catalyst [J]. J. Hazard. Mater., 2011, 187(1/2/3): 348-354. |
[40] | Chen F, Shen X, Wang Y, et al. CeO2/H2O2 system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange 7 [J]. Appl. Catal. B, 2012, 121/122: 223-229. |
[41] | Jablonski J. High temperature reduction with hydrogen, phase composition, and activity of cobalt/silica catalysts [J]. J. Catal., 2003, 220(1): 146-160. |
[42] | Liu Y, Sun D. Effect of CeO2 doping on catalytic activity of Fe2O3/γ-Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes [J]. J. Hazard. Mater., 2007, 143(1/2): 448-454. |
[43] | Wang Y, Zhao H, Li M, et al. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid [J]. Appl. Catal. B, 2014, 147: 534-545. |
[44] | Lu A, Salabas E L, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application [J]. Angew. Chem. Int. Ed., 2007, 46(8): 1222-1244. |
[45] | Yan Y, Jiang S, Zhang H. Efficient catalytic wet peroxide oxidation of phenol over Fe-ZSM-5 catalyst in a fixed bed reactor [J]. Sep. Purif. Technol., 2014, 133: 365-374. |
[46] | Fortuny A, Font J, Fabregat A. Wet air oxidation of phenol using active carbon as catalyst [J]. Appl. Catal. B, 1998, 19: 166-173. |
[47] | Chang F, Xie Y, Li C, et al. A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue [J]. Appl. Surf. Sci., 2013, 280: 967-974. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[3] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[4] | Erqi WANG, Shuzhou PENG, Zhen YANG, Yuanyuan DUAN. Evaluation of vapor-liquid equilibrium models for mixtures containing HFOs [J]. CIESC Journal, 2023, 74(8): 3216-3225. |
[5] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[6] | Chongda DUAN, Xiaowei YAO, Jiahua ZHU, Jing SUN, Nan HU, Guangyue LI. Effects of environmental factors on calcium carbonate precipitation induced by Klebsiella aerogenes [J]. CIESC Journal, 2023, 74(8): 3543-3553. |
[7] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[8] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[9] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[10] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[11] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[12] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[13] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[14] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[15] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||