[1] |
贺丁, 赵劲松. 基于Hopfield网络的时滞分析故障诊断策略[J]. 化工学报, 2013, 64 (2): 633-640. DOI: 10.3969/j.issn.0438-1157.201302030. HE D, ZHAO J S. Fault strategy of time delay analysis based on Hopfield network[J]. CIESC Journal, 2013, 64 (2): 633-640. DOI: 10.3969/j.issn.0438-1157.201302030.
|
[2] |
胡耀斌, 谢静, 胡良斌. 基于神经网络与小波变换的滚动轴承故障诊断[J]. 机械设计与研究, 2013, 29 (6): 33-35. HU Y B, XIE J, HU L B. Fault diagnosis of antifriction bearings based on the neural network and wavelet transform[J]. Machine Design and Research, 2013, 29 (6): 33-35.
|
[3] |
王瑞海, 孙鹏, 吕振江, 等. 概率神经网络在水泵故障诊断中的应用研究[J]. 煤矿机械, 2014, 35 (10): 285-287. DOI: 10.13436/j.mkjx.201410125. WANG R H, SUN P, LÜ Z J, et al. Research on the application of probabilistic neural network for the fault diagnosis in pump[J]. Coal Mine Machinery, 2014, 35 (10): 285-287. DOI: 10.13436/j.mkjx. 201410125.
|
[4] |
MA D Y, LIANG Y C, ZHAO X S, et al. Multi-BP expert system for fault diagnosis of power system[J]. Engineering Applications of Artificial Intelligence, 2013, 26 (3): 937-944. DOI: 10.1016/j.engappai. 2012. 03. 017.
|
[5] |
HABERL J S, CLARIDGE D E. An expert system for building energy consumption analysis: prototype results[C]//Proceedings of the ASHRAE Conferences. New York: ASHRAE Transactions, 1987.
|
[6] |
刘相艳, 谷波, 黎远光. 基于并行感知器的制冷系统故障诊断分析[J]. 上海交通大学学报, 2005, 39 (8): 1233-1239. LIU X Y, GU B, LI Y G. Analysis of fault diagnosis for refrigeration system based on parallel perceptron[J]. Journal of Shanghai Jiaotong University, 2005, 39 (8): 1233-1239.
|
[7] |
马炎坤. 组态软件在冷水机组实时监视与故障诊断方面的应用[J]. 低温与超导, 2008, 36 (10): 77-81. MA Y K. Application of configuration software in the real-time monitoring and fault diagnosis for chillers[J].Cryogenics and Superconductivity, 2008, 36 (10): 77-81.
|
[8] |
LI H R, BRAUN J E. Decoupling features and virtual sensors for diagnosis of faults in vapor compression air conditioners[J]. International Journal of Refrigeration, 2007, 30 (3): 546-564. DOI: 10.1016/j.ijrefrig. 2006. 07.024.
|
[9] |
NAJAFI M, AUSLANDER D M, BARTLETT P L, et al. Application of machine learning in the fault diagnostics of air handling units[J]. Applied Energy, 2012, 96: 347-358. DOI:10.1016/j.apenergy.2012.02.049.
|
[10] |
LI S, WEN J. Application of pattern matching method for detecting faults in air handling unit system[J]. Automation in Construction, 2014, 43: 49-58. DOI:10.1016/j.autcon.2014.03.002.
|
[11] |
王伟, 姚杨, 马最良. 基于BP神经网络的压缩机性能预测模型的建立[J]. 流体机械, 2005, 33 (9):21-24. WANG W, YAO Y, MA Z L. Establishment of the performance forecast model for compressor based on BP neural network[J]. Fluid Machinery, 2005, 33 (9): 21-24.
|
[12] |
YILMAZ S, ATIK K. Modeling of a mechanical cooling system with variable cooling capacity by using artificial neural network[J]. Applied Thermal Engineering, 2007, 27 (13): 2308-2313. DOI: 10.1016/j.applthermaleng. 2007.01.030.
|
[13] |
KAMAR H M, AHMAD R, KAMSAH N B, et al. Artificial neural networks for automotive air-conditioning systems performance prediction[J]. Applied Thermal Engineering, 2013, 50 (1): 63-70. DOI: 10.1016/j.applthermaleng. 2012.05.032.
|
[14] |
ERTUNC H M, HOSOZ M. Artificial neural network analysis of a refrigeration system with an evaporative condenser[J]. Applied Thermal Engineering, 2006, 26 (5/6): 627-635. DOI: 10.1016/j.applthermaleng. 2005. 06.002.
|
[15] |
李中领, 金宁, 朱岩. 人工神经网络应用于空调系统故障诊断的研究[J]. 制冷与空调, 2005, 5 (1): 50-53. LI Z L, JIN N, ZHU Y. Research on artificial neural network for fault diagnosis of air conditioning system[J]. Refrigeration & Air-Conditioning, 2005, 5 (1): 50-53.
|
[16] |
KOCYIGIT N. Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network[J]. International Journal of Refrigeration, 2014, 50: 69-79.
|
[17] |
WU J D, CHIANGA P H, CHANGB Y W, et al. An expert system for fault diagnosis in internal combustion engines using probability neural network[J]. Expert Systems with Applications, 2008, 34 (4): 2704-2713. DOI: 10.1016/j.eswa.2007.05.010.
|
[18] |
ZHAO J, WANG X Y, JIN P Q. Feature selection for event discovery in social media: a comparative study[J]. Computers in Human Behavior, 2015, 51: 903-909. DOI: 10.1016/j.chb.2014.11.007.
|
[19] |
韩华, 谷波, 任能. 基于主元分析与支持向量机的制冷系统故障诊断方法[J]. 上海交通大学学报, 2011,45 (9): 1355-1361. HAN H, GU B, REN N. Fault diagnosis for refrigeration system based on principal component analysis and support vector machine[J]. Journal of Shanghai Jiaotong University, 2011, 45 (9): 1355-1361.
|
[20] |
杨淑莹. 模式识别与智能计算MATLAB技术实现[M]. 2版. 北京:电子工业出版社, 2011: 120. YANG S Y. Pattern Recognition and Intelligent Computing— MATLAB Implementation[M]. 2nd ed. Beijing: Electronic Industry Press, 2011:120.
|
[21] |
陈明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2013: 58. CHEN M. MATLAB Neural Network Principle and Instance Analysis[M]. Beijing: Tsinghua University Press, 2013: 58.
|
[22] |
KARTHIKEYAN B, GOPAL S, VIMALA M. Conception of complex probabilistic neural network system for classification of partial discharge patterns using multifarious inputs[J]. Expert Systems with Applications, 2005, 29 (4): 953-963. DOI:10.1016/j.eswa.2005.06.014.
|
[23] |
COMSTOCK M C, BRAUN J E. Development of analysis tools for the evaluation of fault detection and diagnostics for chillers[R]. ASHRAE, 1999.
|
[24] |
LI H R. A decoupling-based FDD approach for multiple simultaneous faults[D].West Lafayette: Purdue University, 2003.
|
[25] |
HAN H, GU B, WANG T, et al. Important sensors for chiller fault detection and diagnosis (FDD) from the perspective of feature selection and machine learning[J]. International Journal of Refrigeration, 2011, 34: 586-599.
|