CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 73-82.DOI: 10.11949/j.issn.0438-1157.20151556
Previous Articles Next Articles
YANG Xiaoli, SU Xiong, YANG Xiaofeng, HUANG Yanqiang, WANG Aiqin, ZHANG Tao
Received:
2015-10-14
Revised:
2015-11-26
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Natural Science Foundation of China(21203182, 21476226, 21506204).
杨晓丽, 苏雄, 杨小峰, 黄延强, 王爱琴, 张涛
通讯作者:
张涛
基金资助:
国家自然科学基金项目(21203182,21476226,21506204)。
CLC Number:
YANG Xiaoli, SU Xiong, YANG Xiaofeng, HUANG Yanqiang, WANG Aiqin, ZHANG Tao. Stabilization mechanism of supported metal catalyst[J]. CIESC Journal, 2016, 67(1): 73-82.
杨晓丽, 苏雄, 杨小峰, 黄延强, 王爱琴, 张涛. 负载型金属催化剂的热稳定机制[J]. 化工学报, 2016, 67(1): 73-82.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20151556
[1] | 黄仲涛. 工业催化剂手册[M]. 北京: 化学工业出版社, 2004.HUANG Z T. Handbook of Industrial Catalysts[M]. Beijing: Chemical Industry Press, 2004. |
[2] | 曾成华. 负载型金属催化剂的研究进展 [J]. 攀枝花学院学报, 2006, 23(2): 110-114. DOI: 10.3969/j.issn.1672-0563.2006.02.033.ZENG C H. The research progress of supported metal catalysts [J]. Journal of Panzhihua University, 2006, 23(2): 110-114. DOI: 10.3969/j.issn.1672-0563.2006.02.033. |
[3] | 郑双双, 刘利平. 负载型金属催化剂制备新技术研究进展 [J]. 广东化工, 2012, 39(9): 12-13. DOI: 10.3969/j.issn.1007-1865. 2012.09.006.ZHENG S S, LIU L P. Research progress of new technology on supported metal catalyst preparation [J]. Guangdong Chemical Industry, 2012, 39(9): 12-13. DOI: 10.3969/j.issn.1007-1865. 2012.09.006. |
[4] | GATES B C. Supported metal cluster catalysts: progress and perspectives//Abstracts of Papers of the American Chemical Society[C]. 2001: 222, U198. |
[5] | 张以敏, 姜浩锡. 超临界流体沉积技术制备负载型金属催化剂的研究进展 [J]. 化工进展, 2013, (8): 1825-1831. DOI: 10.3969/j.issn. 1000-6613.2013.08.018.ZHANG Y M, JIANG H X. Preparation of supported metal catalyst via supercritical fluid deposition [J]. Chemical Industry and Engineering Progress, 2013, (8): 1825-1831. DOI: 10.3969/j.issn.1000-6613.2013.08.018. |
[6] | THOMAS J M, JOHNSON B F G, RAJA R, et al. High-performance nanocatalysts for single-step hydrogenations [J]. Cheminform, 2003, 36(16): 20-30. |
[7] | YANG X F, WANG A Q, QIAO B T, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis [J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748. |
[8] | QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx [J]. Nature Chemistry, 2011, 3(8): 634-641. |
[9] | JAIN P K, HUANG X, EL-SAYED I H, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine [J]. Accounts of Chemical Research, 2008, 41(12): 1578-1586. |
[10] | TOH H S, COMPTON R G. ‘Nano-impacts': an electrochemical technique for nanoparticle sizing in optically opaque solutions [J]. Chemistryopen, 2015, 4(3): 261-263. |
[11] | 李令成, 蓝蕴基. 肼分解催化剂进展 [J]. 工业催化,1994, 1(1): 3-7.LI L C, LAN Y J. Process in hydrazine decomposition catalysts [J]. Industrial Catalysis, 1994, 1(1): 3-7. |
[12] | 吴霞. 负载金属催化剂的结构性能表征 [J]. 广东化工, 2012, 39(9): 39. DOI: 10.3969/j.issn.1007-1865.2012.09.020.WU X. Structure characterization of supported metal clusters [J]. Guangdong Chemical Industry, 2012, 39(9): 39. DOI: 10.3969/j.issn. 1007-1865.2012.09.020. |
[13] | 杨春雁, 杨卫亚, 凌凤香, 等. 负载型金属催化剂表面金属分散度的测定 [J]. 化工进展, 2010, 29(8): 1468-1473.YANG C Y, YANG W Y, LING F X, et al. Determination of metal dispersion on supported metal catalyst surface [J]. Chemical Industry and Engineering Progress, 2010, 29(8): 1468-1473. |
[14] | LORIA H, PEREIRA-ALMAO P, SCOTT C E. Determination of agglomeration kinetics in nanoparticle dispersions [J]. Industrial & Engineering Chemistry Research, 2011, 50: 8529-8535. |
[15] | 萨特菲尔德. 实用多相催化[M]. 庞礼, 译. 北京: 北京大学出版社,1990.SATTERFIELD C N. Practical Heterogeneous Catalysis[M]. PANG L, trans. Beijing: Beijing University Press, 1990. |
[16] | HANSEN T W, DELARIVA A T, CHALLA S R, et al. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? [J]. Accounts of Chemical Research, 2013, 46(8): 1720-1730. |
[17] | VOORHEES P W. The theory of Ostwald ripening [J]. Journal of Statistical Physics, 1985, 38(1/2): 231-252. |
[18] | KISTAMURTHY D, SAIB A M, MOODLEY D J, et al. Ostwald ripening on a planar Co/SiO2 catalyst exposed to model Fischer-Tropsch synthesis conditions [J]. Journal of Catalysis, 2015, 328: 123-129. |
[19] | LIU B, ZENG H C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors [J]. Small, 2005, 1(5): 566-571. |
[20] | OUYANG R H, LIU J X, LI W X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions [J]. Journal of the American Chemical Society, 2013, 135(5): 1760-1771. |
[21] | RASMUSSEN D B, JANSSENS T V W, TEMEL B, et al. The energies of formation and mobilities of Cu surface species on Cu and ZnO in methanol and water gas shift atmospheres studied by DFT [J]. Journal of Catalysis, 2012, 293(1): 205-214. |
[22] | FINNEY E E, SHIELDS S P, BUHRO W E, et al. Gold nanocluster agglomeration kinetic studies: evidence for parallel bimolecular plus autocatalytic agglomeration pathways as a mechanism-based alternative to an avrami-based analysis [J]. Chemistry of Materials, 2012, 24(10): 1718-1725. |
[23] | BAYRAM E, LU J, AYDIN C, et al. Agglomerative sintering of an atomically dispersed Ir1/zeolite Y catalyst: compelling evidence against Ostwald ripening but for bimolecular and autocatalytic agglomeration catalyst sintering steps [J]. ACS Catalysis, 2015, 5(6): 3514-3527. |
[24] | SHIRAKAWA H, KOMIYAMA H. Migration-coalescence of nanoparticles during deposition of Au, Ag, Cu, and GaAs on amorphous SiO2 [J]. Journal of Nanoparticle Research, 1999, 1(1): 17-30. |
[25] | ZHANG W J, MISER D E. Coalescence of oxide nanoparticles: in situ HRTEM observation [J]. Journal of Nanoparticle Research, 2006, 8(6): 1027-1032. |
[26] | LUND C R F, DUMESIC J A. Strong oxide-oxide interactions in silica-supported magnetite catalysts(Ⅳ): Catalytic consequences of the interaction in water-gas shift [J]. Journal of Catalysis, 1982, 76(82): 93-100. |
[27] | SHEN G C, ICHIKAWA M. Methane hydrogenation and confirmation of CHx intermediate species on NaY encapsulated cobalt clusters and Co/SiO2 catalysts: EXAFS, FTIR, UV characterization and catalytic performances [J]. Journal of the Chemical Society Faraday Transactions, 1997, 93(6): 1185-1193. |
[28] | RASHKEEV S N, DAI S, OVERBURY S H. Modification of Au/TiO2 nanosystems by SiO2 monolayers: toward the control of the catalyst activity and stability [J]. Journal of Physical Chemistry C, 2010, 114(7): 2996-3002. |
[29] | 李雷, 李彦兴, 姚瑶, 等. 核壳结构纳米材料的创制及在催化化学中的应用 [J]. 化工进展, 2013, 25(10): 1681-1690.LI L, LI Y X, YAO Y, et al. Process and prospective in fabrication and application of core-shell structure nanomaterials in catalytic chemistry [J]. Chemical Industry and Engineering Progress, 2013, 25(10): 1681-1690. |
[30] | LONG N V, YANG Y, THI C M, et al. The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells [J]. Nano Energy, 2013, 2(5): 636-676. |
[31] | YONG W, MIN Y L, YU S H. Synthesis of silica/carbon-encapsulated core-shell spheres: templates for other unique core-shell structures and applications in in situ loading of noble-metal nanoparticles [J]. Langmuir, 2008, 24(9): 5024-5028. |
[32] | HE B B, ZHAO Q G, ZENG Z G, et al. Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core-shell catalyst for CO oxidation at low temperature [J]. Journal of Materials Science, 2015, 50 (19): 6339-6348. |
[33] | ADIJANTO L, SAMPATH A, YU A S, et al. Synthesis and stability of Pd@CeO2 core-shell catalyst films in solid oxide fuel cell anodes [J]. ACS Catalysis, 2013, 3(8): 1801-1809. |
[34] | JOO S H, PARK J Y, TSUNG C K, et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions [J]. Nature Materials, 2009, 8(2): 126-131. |
[35] | LEE I, ZHANG Q, GE J P, et al. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability [J]. Nano Research, 2011, 4(1): 115-123. |
[36] | LAUHON L J, GUDIKSEN M S, WANG C L, et al. Epitaxial core-shell and core-multishell nanowire heterostructures [J]. Nature, 2002, 420(6911): 57-61. |
[37] | SCHWARZE M, KEILITZ J, NOWAG S, et al. Quasi-homogeneous hydrogenation with platinum and palladium nanoparticles stabilized by dendritic core-multishell architectures [J]. Langmuir, 2011, 27(10): 6511-6518. |
[38] | CHEN C, FANG X L, WU B H, et al. A multi-yolk-shell structured nanocatalyst containing sub-10 nm Pd nanoparticles in porous CeO2 [J]. Chemcatchem, 2012, 4(10): 1578-1586. |
[39] | ZHANG Q, LEE I, JOO J B, et al. Core-shell nanostructured catalysts [J]. Accounts of Chemical Research, 2012, 46(8): 1816-1824. |
[40] | TIAN H, LI X, ZENG L, et al. Recent advances on the design of group Ⅷ base-metal catalysts with encapsulated structures [J]. ACS Catalysis, 2015, 5(8): 4959-4977. |
[41] | LU J, AYDIN C, BROWNING N D, et al. Imaging isolated gold atom catalytic sites in zeolite NaY [J]. Angewandte Chemie International Edition, 2012, 51(24): 5842-5846. |
[42] | RAO L F, PRUSKI M, KING T S. Structure and stability of rhodium clusters in NaY studied by NMR and FTIR [J]. The Journal of Physical Chemistry B, 1997, 101(29): 5717-5724. |
[43] | LAURSEN A B, HOJHOLT K T, LUNDEGAARD L F, et al. Substrate size-selective catalysis with zeolite-encapsulated gold nanoparticles [J]. Angewandte Chemie International Edition, 2010, 122(20): 3582-3585. |
[44] | WU Z J, GOEL S, CHOI M, et al. Hydrothermal synthesis of LTA-encapsulated metal clusters and consequences for catalyst stability, reactivity, and selectivity [J]. Journal of Catalysis, 2014, 311: 458-468. |
[45] | 徐如人. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004.XU R R. Molecular Sieve and Porous Material Chemistry [M]. Beijing: Science Press, 2004. |
[46] | HUANG W, KUHN J N, TSUNG C K, et al. Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation [J]. Nano Letters, 2008, 8(7): 2027-2034. |
[47] | JIANG Y J, GAO Q M. Heterogeneous hydrogenation catalyses over recyclable Pd(0) nanoparticle catalysts stabilized by PAMAM-SBA-15 organic-inorganic hybrid composites [J]. Journal of the American Chemical Society, 2006, 128(3): 716-717. |
[48] | ZHANG H, SUN J M, MA D, et al. Unusual mesoporous SBA-15 with parallel channels running along the short axis [J]. Journal of the American Chemical Society, 2004, 126(24): 7440-7441. |
[49] | RIBEIRO R U, MEIRA D M, RODELLA C B, et al. Probing the stability of Pt nanoparticles encapsulated in sol-gel Al2O3 using in situ and ex situ characterization techniques [J]. Applied Catalysis A General, 2014, 485: 108-117. |
[50] | GAO P, WANG A, WANG X, et al. Synthesis of highly ordered Ir-containing mesoporous carbon materials by organic-organic self-assembly [J]. Chemistry of Materials, 2008, 20(5): 1881-1888. |
[51] | O'NEILL B J, JACKSON D H K, LEE J, et al. Catalyst design with atomic layer deposition [J]. ACS Catalysis, 2015, 5(3): 1804-1825. |
[52] | SARR M, BAHLAWANE N, ARL D, et al. Tailoring the properties of atomic layer deposited nickel and nickel carbide thin films via chain-length control of the alcohol reducing agents [J]. Journal of Physical Chemistry C, 2014, 118(40): 23385-23392. |
[53] | YAN H, CHENG H, YI H, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene [J]. Journal of the American Chemical Society, 2015, 137(33): 10484-10487. |
[54] | LU J L, STAIR P C. Low-temperature ABC-type atomic layer deposition: synthesis of highly uniform ultrafine supported metal nanoparticles [J]. Angewandte Chemie International Edition, 2010, 49(14): 2547-2551. |
[55] | LU J L, ELAM J W, STAIR P C. Synthesis and stabilization of supported metal catalysts by atomic layer deposition [J]. Accounts of Chemical Research, 2013, 46(8): 1806-1815. |
[56] | LU J L, FU B S, KUNG M C, et al. Coking-and sintering-resistant palladium catalysts achieved through atomic layer deposition [J]. Science, 2012, 335(6073): 1205-1208. |
[57] | LIANG X H, LI J H, YU M, et al. Stabilization of supported metal nanoparticles using an ultrathin porous shell [J]. ACS Catalysis, 2011, 1(10): 1162-1165. |
[58] | SUNG J, KOSUDA K M, ZHAO J, et al. Stability of silver nanoparticles fabricated by nanosphere lithography and atomic layer deposition to femtosecond laser excitation [J]. The Journal of Physical Chemistry C, 2008, 112(15): 5707-5714. |
[59] | LIU X Y, WANG A Q, ZHANG T, et al. Catalysis by gold: new insights into the support effect [J]. Nano Today, 2013, 8(4): 403-416. |
[60] | LIU X Y, LIU M H, LUO Y C, et al. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation [J]. Journal of the American Chemical Society, 2012, 134(24): 10251-10258. |
[61] | YANG M, ALLARD L F, FLYTZANI-STEPHANOPOULOS M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction [J]. Journal of the American Chemical Society, 2013, 135: 3768-3771. |
[62] | FLYTZANI-STEPHANOPOULOS M. Gold atoms stabilized on various supports catalyze the water-gas shift reaction [J]. Accounts of Chemical Research, 2013, 47(3): 783-792. |
[63] | KWAK J H, HU J Z, MEI D, et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3 [J]. Science, 2009, 325(5948): 1670-1673. |
[64] | YANG M, LI S, WANG Y, et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides [J]. Science, 2014, 346(6216): 1498-1501. |
[65] | LI W Z, KOVARIK L, MEI D H, et al. A general mechanism for stabilizing the small sizes of precious metal nanoparticles on oxide supports [J]. Chemistry of Materials, 2014, 26(19): 5475-5481. |
[66] | GUO X G, FANG G Z, LI G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen [J]. Science, 2014, 344(6184): 616-619. |
[67] | CAMPBELL C T, PEDEN C H F. Chemistry-oxygen vacancies and catalysis on ceria surfaces [J]. Science, 2005, 309(5735): 713-714. |
[68] | FARMER J A, CAMPBELL C T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding [J]. Science, 2010, 329(5994): 933-936. |
[69] | TA N, LIU J Y, CHENNA S, et al. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring [J]. Journal of the American Chemical Society, 2012, 134(51): 20585-20588. |
[70] | SI R, FLYTZANI-STEPHANOPOULOS M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction [J]. Angewandte Chemie International Edition, 2008, 120(15): 2926-2929. |
[71] | LIN Q Q, HUANG Y Q, WANG Y, et al. RuO2/rutile-TiO2: a superior catalyst for N2O decomposition [J]. Journal of Materials Chemistry A, 2014, 2(15): 5178-5181. |
[72] | WANG A Q, LIU X Y, MOU C Y, et al. Understanding the synergistic effects of gold bimetallic catalysts [J]. Journal of Catalysis, 2013, 308(4): 258-271. |
[73] | PEI G X, LIU X Y, WANG A Q, et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene [J]. ACS Catalysis, 2015, 5(6): 3717-3725. |
[74] | XU J, WHITE T, LI P, et al. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation [J]. Journal of the American Chemical Society, 2010, 132(30): 10398-10406. |
[75] | ZHANG H J, WATANABE T, OKUMURA M, et al. Catalytically highly active top gold atom on palladium nanocluster [J]. Nature Materials, 2011, 11(1): 49-52. |
[76] | ZHANG L L, WANG A Q, MILLER J T, et al. Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water [J]. ACS Catalysis, 2014, 4(5): 1546-1553. |
[77] | CHENG D J, HUANG S P, WANG W C. Thermal behavior of core-shell and three-shell layered clusters: melting of Cu1Au54 and Cu12Au43 [J]. Physical Review B, 2006, 74(6). DOI: 10. 1103/physRevB.74.064117. |
[78] | LIU X Y, WANG A Q, YANG X F, et al. Synthesis of thermally stable and highly active bimetallic Au-Ag nanoparticles on inert supports [J]. Chemistry of Materials, 2008, 21(2): 410-418. |
[79] | HE L, HUANG Y Q, WANG A Q, et al. Surface modification of Ni/Al2O3 with Pt: highly efficient catalysts for H2 generation via selective decomposition of hydrous hydrazine [J]. Journal of Catalysis, 2013, 298(1): 1-9. |
[80] | HE L, HUANG Y Q, LIU X Y, et al. Structural and catalytic properties of supported Ni-Ir alloy catalysts for H2 generation via hydrous hydrazine decomposition [J]. Applied Catalysis B Environmental, 2014, 147(14): 779-788. |
[81] | CAO A, VESER G. Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles [J]. Nature Materials, 2010, 9(1): 75-81. |
[82] | LI W J, WANG A Q, LIU X Y, et al. Silica-supported Au-Cu alloy nanoparticles as an efficient catalyst for selective oxidation of alcohols [J]. Applied Catalysis A: General, 2012, 433: 146-151. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[3] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[6] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[7] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[8] | Wenqi HOU, Yan SUN, Xiaoyan DONG. Basification modification of transthyretin significantly enhances inhibitory effect on amyloid-β protein aggregation [J]. CIESC Journal, 2023, 74(5): 2100-2110. |
[9] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[10] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[11] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[12] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[13] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[14] | Xiangshang CHEN, Zhenjie MA, Xihua REN, Yue JIA, Xiaolong LYU, Huayan CHEN. Preparation and mass transfer efficiency of three-dimensional network extraction membrane [J]. CIESC Journal, 2023, 74(3): 1126-1133. |
[15] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||