[1] |
康峰, 伍艳辉, 李佟明. 生物燃料电池研究进展[J]. 电池技术, 2004, (11): 723-727. KANG F, WU Y H, LI T M. The research progress of a microbial fuel cell[J]. Journal of Battery Technology, 2004, (11): 723-727.
|
[2] |
张辉, 胡勤海, 吴祖成, 等. 城市污泥能源化利用研究进展[J]. 化工进展, 2013, 32 (5): 1145-1151. ZHANG H, HU Q H, WU Z C, et al. An overview on utilization of municipal sludge as energy resources[J]. Chemical Industry and Engineering Progress, 2013, 32 (5): 1145-1151.
|
[3] |
LOGAN B E, REGAN J M. Electricity-producing bacterial communities in microbial fuel cells[J]. TRENDS in Microbiology, 2006, 14 (12): 512-518.
|
[4] |
HARMAND J, RAPAPORT A, DOCHAIN D, et al. Microbial ecology and bioprocess control: opportunities and challenges[J]. Journal of Process Control, 2008, (18): 865-875.
|
[5] |
安爱民, 张爱华, 张浩琛. 影响微生物燃料电池产电性能主要因素分析及其性能测试[J]. 计算机与应用化学, 2014, (11): 1287-1292. AN A M, ZHANG A H, ZHANG H C. Analysis of main factors of the effects microbial fuel cell on performances of electricity production and performance test[J]. Computer and Applied Chemistry, 2014, (11): 1287-1292.
|
[6] |
AN A M, WANG J, ZHANG H C, et al. Dynamics analysis of a microbial fuel cell system and PID control of its power and current based on the critical proportion degree method[J]. Environmental Engineering and Management Journal, 2015, 14 (8): 1821-1828.
|
[7] |
李俊, 张亮, 朱恂, 等. 变负载工况下微生物燃料电池响应特性[J]. 化工学报, 2012, 63 (5): 200-203. LI J, ZHANG L, ZHU X, et al. Response of a microbial fuel cell to variable loads[J]. CIESC Journal, 2012, 63 (5): 200-203.
|
[8] |
叶遥立, 郭剑, 潘彬, 等. 阳极双电层电容对微生物燃料电池性能的影响[J]. 化工学报, 2015, 66 (2): 773-778. YE Y L, GUO J, PAN B, et al. Effect of anode double-layered capacitance on performance of microbial fuel cell[J]. CIESC Journal, 2015, 66 (2): 773-778.
|
[9] |
岳学海, 孔维芳, 王许云, 等. 厌氧流化床微生物燃料电池空气阴极研究[J]. 化工学报, 2013, 64 (1): 353-356. YUE X H, KONG W F, WANG X Y, et al. Research on air-cathode of anaerobic fluidized bed microbial fuel cell[J]. CIESC Journal, 2013, 64 (1): 353-356.
|
[10] |
陈庆云, 王云海. 微生物燃料电池阴极功能的研究进展[J]. 化工进展, 2013, 32 (10): 2352-2445. CHEN Q Y, WANG Y H. Cathodic function of microbial fuel cells: a review[J]. Chemical Industry and Engineering Progress, 2013, 32 (10): 2352-2445.
|
[11] |
LOGAN B, CHENG S, WATSON V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007, 41 (9): 3341-3346.
|
[12] |
LIU Z D, LIAN J, DU Z W, et al. Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria[J]. Biotechnology, 2006, 22 (1): 131-137.
|
[13] |
PINTO R P, SRINIVASAN B, MANUEL M-F, et al. A two-population bioelectrochemical model of a microbial fuel cell[J]. Bioresource Technology, 2010, (101): 5256-5265.
|
[14] |
PINTO R P, TARTAKOVSKY B, SRINIVASAN B. Optimizing energy productivity of microbial electro-chemical cells[J]. Journal of Process Control, 2012, (22): 1079-1086.
|
[15] |
PINTO R P, SRINIVASAN B, ESCAPA A, et al. A multi-population model of a microbial electrolysis cell[J]. Environmental Science and Technology, 2011, (45): 5039-5046.
|
[16] |
YOU S J, ZHAO Q L, JIANG J Q. Biological wastewater treatment and simultaneous generating electricity from organic wastewater by microbial fuel cell[J]. Environmental Science, 2006, 27 (9): 1786-1790.
|
[17] |
胡耀华, 贾欣乐. 广义预测控制综述[J]. 信息与控制, 2000, 29 (3): 248-256. HU Y H, JIA X Y. Generalized predictive control review[J]. Journal of Information and Control, 2000, 29 (3): 248-256.
|
[18] |
CLARKE D W, MOHTADI C, TUFFS P S. Generalized predictive control (Ⅰ): The basic algorithm[J]. Automatica, 1987, 23 (2): 137-148.
|
[19] |
CLARKE D W, MOHTADI C. Properties of generalized predictive control[J]. Automatica, 1989, 25 (6): 859-875.
|
[20] |
CLARKE D W. Application of generalized predictive control to industrial processes[J]. Control Systems Magazine, IEEE, 1988, 8 (2): 49-55.
|
[21] |
SOLOWAY D I, HALEY P J. Neural generalized predictive control: a Newton-Raphson implementation. Technical Report[R]. NASA-97-tm110244, 1997.
|