CIESC Journal ›› 2019, Vol. 70 ›› Issue (6): 2343-2350.DOI: 10.11949/j.issn.0438-1157.20181433
Previous Articles Next Articles
Hongwei JIN1(),Dandan ZHAI1(),Xin WANG1,Shuang ZHAO1,2,Xiangyang MENG1,Yueying HE1,Yang SHEN1,Ming HUI1()
Received:
2018-11-30
Revised:
2019-03-11
Online:
2019-06-05
Published:
2019-06-05
Contact:
Ming HUI
靳宏伟1(),翟丹丹1(),王心1,赵爽1,2,孟祥阳1,何玥颖1,沈洋1,惠明1()
通讯作者:
惠明
作者简介:
基金资助:
CLC Number:
Hongwei JIN,Dandan ZHAI,Xin WANG,Shuang ZHAO,Xiangyang MENG,Yueying HE,Yang SHEN,Ming HUI. Effect of graphene/polyaniline modified anode on performance of microbial fuel cell[J]. CIESC Journal, 2019, 70(6): 2343-2350.
靳宏伟,翟丹丹,王心,赵爽,孟祥阳,何玥颖,沈洋,惠明. 石墨烯/聚苯胺修饰阳极对微生物燃料电池性能的影响[J]. 化工学报, 2019, 70(6): 2343-2350.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181433
阳极 | 修饰材料制备方法 | MFC类型 | 阳极微生物 | 最大功率密度P max /(mW·m-2) | 文献 | 修饰材料制备难度 | 修饰材料制备成本 | 对MFC性能的提升效果 |
---|---|---|---|---|---|---|---|---|
PANI/石墨烯/钛片 | PANI:电沉积,循环伏安法; 石墨烯:电沉积,循环伏安法 | 双室 | 生活污水 | 156 | [ | + | + | + |
PANI/石墨烯泡沫 | PANI:原位聚合,质子酸掺杂; 石墨烯:化学气相沉积 | 双室 | Shewanella oneidensis | 768 | [ | +++ | +++ | +++ |
PANI/石墨烯/石墨纸 | PANI:电化学,恒电流法电聚合; 石墨烯:电化学剥离 | 双室 | Shewanella oneidensis | 381 | [ | + | + | ++ |
PANI/石墨烯/石墨棒 | PANI和石墨烯:电沉积,循环伏安法 | 双室 | 活性污泥 | 230.2 | [ | + | + | + |
PANI/石墨烯/碳布 | PANI:原位聚合,无掺杂; 石墨烯:电镀 | 双室 | Shewanella oneidensis | 653 | 本文 | + | + | +++ |
Table 1 Comparison of maximal power density with previous reports using PANI /graphene modified electrodes as anodes of MFCs
阳极 | 修饰材料制备方法 | MFC类型 | 阳极微生物 | 最大功率密度P max /(mW·m-2) | 文献 | 修饰材料制备难度 | 修饰材料制备成本 | 对MFC性能的提升效果 |
---|---|---|---|---|---|---|---|---|
PANI/石墨烯/钛片 | PANI:电沉积,循环伏安法; 石墨烯:电沉积,循环伏安法 | 双室 | 生活污水 | 156 | [ | + | + | + |
PANI/石墨烯泡沫 | PANI:原位聚合,质子酸掺杂; 石墨烯:化学气相沉积 | 双室 | Shewanella oneidensis | 768 | [ | +++ | +++ | +++ |
PANI/石墨烯/石墨纸 | PANI:电化学,恒电流法电聚合; 石墨烯:电化学剥离 | 双室 | Shewanella oneidensis | 381 | [ | + | + | ++ |
PANI/石墨烯/石墨棒 | PANI和石墨烯:电沉积,循环伏安法 | 双室 | 活性污泥 | 230.2 | [ | + | + | + |
PANI/石墨烯/碳布 | PANI:原位聚合,无掺杂; 石墨烯:电镀 | 双室 | Shewanella oneidensis | 653 | 本文 | + | + | +++ |
1 | Logan B E , Wallack M J , Kim K Y , et al . Assessment of microbial fuel cell configurations and power densities[J]. Environmental Science & Technology Letters, 2015, 2: 206-214. |
2 | Xie Y , Ma Z , Song H , et al . Melamine modified carbon felts anode with enhanced electrogenesis capacity toward microbial fuel cells[J]. Journal of Energy Chemistry, 2017, 26(1): 81-86. |
3 | Logan B E . Microbial Fuel Cells[M]. John Wiley & Sons, Inc. , 2008: 61-84. |
4 | Xia C , Zhang D , Peddrvz W , et al . Models for microbial fuel cells: a critical review[J]. The Journal of Engineering, 2017, (13): 1269. |
5 | Zhang J , Li J , Ye D , et al . Enhanced performances of microbial fuel cells using surface-modified carbon cloth anodes: a comparative study[J]. International Journal of Hydrogen Energy, 2014, 39(33): 19148-19155. |
6 | 王维大, 李浩然, 冯雅丽, 等 . 微生物燃料电池的研究应用进展[J]. 化工进展, 2014, 33(5): 1067-1076. |
Wang W D , Li H R , Feng Y L , et al . Progress in research and application of microbial fuel cells[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1067-1076. | |
7 | Zhu N , Chen X , Zhang T , et al . Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes[J]. Bioresource Technology, 2011, 102(1): 422-426. |
8 | Liu J , He W . Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode[J]. Journal of Power Sources, 2014, 265: 391-396. |
9 | Xin W , Cheng S A , Feng Y J , et al . Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(17): 6870-6874. |
10 | Feng C , Ma L , Li F , et al . A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells[J]. Biosensors & Bioelectronics, 2010, 25(6): 1516-1520. |
11 | Batzill M . The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects[J]. Cheminform, 2013, 67(3): 83-115. |
12 | Agarwal S , Zhou X , Ye F , et al . Interfacing live cells with nanocarbon substrates[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2010, 26(4): 2244. |
13 | Chao L , Zhang L B , Ding L L , et al . Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis [J]. Biosensors & Bioelectronics, 2011, 26(10): 4169-4176. |
14 | 黄力华, 李秀芬, 任月萍, 等 . 石墨烯掺杂聚苯胺阳极提高微生物燃料电池性能[J]. 环境科学, 2017, 38(4): 1717-1725. |
Huang L H , Li X F , Ren Y P , et al . Graphene-doped polyaniline anodes improve microbial fuel cell performance [J]. Environmental Science, 2017, 38(4): 1717-1725. | |
15 | Liao Z H , Sun J Z , Sun D Z , et al . Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells[J]. Bioresource Technology, 2015, 192(2): 831-834. |
16 | Hou J , Liu Z , Zhang P . A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes[J]. Journal of Power Sources, 2013, 224(4): 139-144. |
17 | Yong Y C , Dong X C , Chanpark M B , et al . Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells[J]. ACS Nano, 2012, 6(3): 2394. |
18 | 周扬 . 石墨烯聚苯胺修饰电极在双室微生物燃料电池中的应用研究[D]. 西安: 长安大学, 2015. |
Zhou Y . Application of graphene polyaniline modified electrode in dual-chamber microbial fuel cell[D]. Xi an: Chang an University, 2015. | |
19 | Sun D Z , Yu Y Y , Xie R R , et al . In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems[J]. Biosensors and Bioelectronics, 2017, 87: 195-202. |
20 | 何海波, 王许云, 白立俊, 等 . 石墨烯/聚苯胺复合阳极的制备及在MFC中的应用[J]. 化工学报, 2014, 65(6): 2186-2192. |
He H B , Wang X Y , Bai L J , et al . Preparation of graphene/polyaniline composite anode and its application in MFC[J]. CIESC Journal, 2014, 65(6): 2186-2192. | |
21 | Liu J , Qiao Y , Guo C X , et al . Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells[J]. Bioresource Technology, 2012, 114(3): 275-280. |
22 | Yeltik A , Kucukayan-Dogu G , Guzelturk B , et al . Evidence for nonradiative energy transfer in graphene-oxide-based hybrid structures[J]. J. Phys.Chem.C, 2013, 117(48): 25298-25304. |
23 | Zhang K , Zhang L L , Zhao X S , et al . Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chemistry of Materials, 2010, 22(4): 1392-1401. |
24 | Yan J , Wei T , Shao B , et al . Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance[J]. Carbon, 2010, 48(2): 487-493. |
25 | 王宏智, 高翠侠, 张鹏, 等 . 石墨烯/聚苯胺复合材料的制备及其电化学性能[J]. 物理化学学报, 2013, 29(1): 117-122. |
Wang H Z , Gao C X , Zhang P , et al . Preparation and electrochemical properties of graphene/polyaniline composites[J]. Acta Phys. Sinica, 2013, 29(1): 117-122. | |
26 | Qi Q , Wang X Y , He H B , et al . Preparation and performance of PANI film anodes for MFC[J]. Science & Technology Review, 2015, 33(14): 82-86. |
27 | Zhang L , Long Y , Chen Z , et al . The effect of hydrogen bonding on self‐assembled polyaniline nanostructures[J]. Advanced Functional Materials, 2010, 14(7): 693-698. |
28 | Wu W , Pan D , Li Y , et al . Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode[J]. Electrochimica Acta, 2015, 152: 126-134. |
29 | 李晓霞, 许鹏程 . 掺杂硫酸浓度对聚苯胺膜性能的影响[J]. 电子元件与材料, 2006, 25(3): 27-29. |
Li X X , Xu P C . Effect of doping sulfuric acid concentration on properties of polyaniline films[J]. Electronic Components & Materials, 2006, 25(3): 27-29. | |
30 | Li Y , Zhao X , Yu P , et al . Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor[J]. Langmuir, 2013, 29(1): 493-500. |
31 | Yu Y Y , Guo X C , Yong Y C , et al . Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode[J]. Chemosphere, 2015, 140: 26-33. |
32 | Strycharz S M , Malanoski A P , Snider R M , et al . Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1 vs. variant strain KN400[J]. Energy & Environmental Science, 2011, 4(3): 896-913. |
33 | Qian D , Chang C I . A linear constrained distance-based discriminant analysis for hyperspectral image classification[J]. Pattern Recognition, 2001, 34(2): 361-373. |
34 | Langhus D L . Fundamentals of electroanalytical chemistry [J]. Journal of Chemical Education, 2002, 79(10): 1207-1208. |
[1] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[2] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[3] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
[4] | Kai HUANG, Sijie WANG, Haiping SU, Cheng LIAN, Honglai LIU. First principle study on inhibition of lithium dendrites growth by regulating graphene layer spacings [J]. CIESC Journal, 2022, 73(8): 3501-3510. |
[5] | Shuang HAN, Nan ZHANG, Hui WANG, Xuan ZHANG, Jinluan YANG, Manlin ZHANG, Zhichao ZHANG. Preparation and application of chlortetracycline electrochemical sensor based on molecularly imprinting technique [J]. CIESC Journal, 2022, 73(8): 3758-3767. |
[6] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[7] | Hongchao LIU, Suhang CHEN, Xianli DUAN, Fan WU, Xiaofei XU, Xianyu SONG, Shuangliang ZHAO, Honglai LIU. Transport behavior of Janus graphene quantum dots in biomembrane: a molecular dynamics simulation [J]. CIESC Journal, 2022, 73(7): 2835-2843. |
[8] | Zhichao LI, Yu ZHENG, Runnan ZHANG, Zhongyi JIANG. Research progress of high flux and antifouling graphene oxide membranes [J]. CIESC Journal, 2022, 73(6): 2370-2380. |
[9] | Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids [J]. CIESC Journal, 2022, 73(3): 1136-1146. |
[10] | Ming HUANG, Liang ZHU, Zixia DING, Yiting MAO, Zhongqing MA. Synergistic interactions of biomass three-component and low-density polyethylene during co-catalytic fast pyrolysis for the production of light aromatics [J]. CIESC Journal, 2022, 73(2): 699-711. |
[11] | Xuemei CHEN, Tong WANG, Yubo GAO, Dingcheng PENG, Yuting LUO. Efficient solar interfacial evaporation using laser-induced graphene [J]. CIESC Journal, 2022, 73(12): 5648-5659. |
[12] | Huan XU, Lyu KE, Shenghui ZHANG, Zilin ZHANG, Guangdong HAN, Jinsheng CUI, Daoyuan TANG, Donghui HUANG, Jiefeng GAO, Xinjian HE. Upgrading dispersion and interfacial morphologies for thermally conductive polypropylene composites by in situ growth of carbon nanotubes at graphene oxide [J]. CIESC Journal, 2022, 73(11): 5150-5157. |
[13] | Haibo LIU, Nan WANG, Hongzhou LIU, Tiezhu CHEN, Jianchang LI. Effects of voltage perturbation on the activities of microorganisms and key enzymes in EAD metabolic flux [J]. CIESC Journal, 2022, 73(10): 4603-4612. |
[14] | HAN Wei, ZHAN Jun, SHI Hong, ZHAO Dong, CAI Shaojun, PENG Xianghong, XIAO Biao, GAO Yu. Synthesis and properties of nitrogen and sulfur codoped graphene quantum dots [J]. CIESC Journal, 2021, 72(S1): 530-538. |
[15] | Shenggui MA, Bowen TIAN, Yuwei ZHOU, Lin CHEN, Xia JIANG, Tao GAO. DFT study of adsorption of H2S on N-doped Stone-Wales defected graphene [J]. CIESC Journal, 2021, 72(9): 4496-4503. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||