[1] |
Fan Y, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells [J]. Environmental Science & Technology, 2008, 42(21): 8101-8107
|
[2] |
Logan B E. Exoelectrogenic bacteria that power microbial fuel cells [J]. Nature Reviews Microbiology, 2009, 7(5): 375-381
|
[3] |
Khera J, Chandra A. Microbial fuel cells: recent trends [J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2012, 82(1): 31-41
|
[4] |
Liu H, Cheng S, Logan B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration [J]. Environmental Science & Technology, 2005, 39(14): 5488-5493
|
[5] |
Mo Y, Liang P, Huang X, et al. Enhancing the stability of power generation of single-chamber microbial fuel cells using an anion exchange membrane [J]. Journal of Chemical Technology and Biotechnology, 2009, 84(12): 1767-1772
|
[6] |
Kim J R, Cheng S, Oh S E, et al. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells [J]. Environmental Science & Technology, 2007, 41(3): 1004-1009
|
[7] |
Rozendal R A, Hamelers H V, Buisman C J. Effects of membrane cation transport on pH and microbial fuel cell performance [J]. Environmental Science & Technology, 2006, 40(17): 5206-5211
|
[8] |
Zhang L, Zhu X, Li J, et al. Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances [J]. Journal of Power Sources, 2011, 196(15): 6029-6035
|
[9] |
Hatzell M C, Kim Y, Logan B E. Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell [J]. Journal of Power Sources, 2013, 229:198-202
|
[10] |
Liu H, Ramnarayanan R, Logan B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environmental Science & Technology, 2004, 38(7): 2281-2285
|
[11] |
Rabaey K, Clauwaert P, Aelterman P, et al. Tubular microbial fuel cells for efficient electricity generation [J]. Environmental Science & Technology, 2005, 39(20): 8077-8082
|
[12] |
Min B, Logan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell [J]. Environmental Science & Technology, 2004, 38(21): 5809-5814
|
[13] |
He Z, Minteer S D, Angenent L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell [J]. Environmental Science & Technology, 2005, 39(14): 5262-5267
|
[14] |
Aelterman P, Rabaey K, Haithe Pham, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells [J]. Environmental Science & Technology, 2006, 40(10): 3388-3394
|
[15] |
Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology [J]. Environmental Science & Technology, 2006, 40(17): 5181-5192
|
[16] |
Borole A P, Hamilton C Y, Vishnivetskaya T A, et al. Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells [J]. Journal of Power Sources, 2009, 191(2): 520-527
|
[17] |
Logan B, Cheng S, Watson V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells [J]. Environmental Science & Technology, 2007, 41(9): 3341-3346
|
[18] |
Wang X, Cheng S, Feng Y, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells [J]. Environmental Science & Technology, 2009, 43(17): 6870-6874
|
[19] |
Zhang Y, Sun J, Hou B, et al. Performance improvement of air-cathode single-chamber microbial fuel cell using a mesoporous carbon modified anode [J]. Journal of Power Sources, 2011, 196(18): 7458-7464
|
[20] |
Lü Z S, Xie D H, Yue X J, et al. Ruthenium oxide-coated carbon felt electrode: a highly active anode for microbial fuel cell applications [J]. Journal of Power Sources, 2012, 210:26-31
|
[21] |
Peng X H, Yu H B, Wang X, et al. Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells [J]. Bioresource Technology, 2012, 121: 450-453
|
[22] |
Peng X, Yu H, Wang X, et al. Enhanced anode performance of microbial fuel cells by adding nanosemiconductor goethite [J]. Journal of Power Sources, 2013, 223: 94-99
|
[23] |
Qu D, Shi H. Studies of activated carbons used in double-layer capacitors [J]. Journal of Power Sources, 1998, 74(1): 99-107
|
[24] |
Cheng S, Wu J. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells [J]. Bioelectrochemistry, 2013, 92: 22-26
|
[25] |
Liu H, Cheng S, Logan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell [J]. Environmental Science & Technology, 2005, 39(2): 658-662
|
[26] |
Jia Zheng (贾铮), Chen Ling(陈玲), Dai Changsong(戴长松).Electrochemical Measuring Method (电化学测量方法) [M]. Beijing: Chemical Industry Press, 2006: 102-104
|
[27] |
Cheng S, Logan B E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells [J]. Electrochemical Communication, 2007(9): 492-496
|
[28] |
Xu Jie(许洁), Hu Zhonghua(胡中华), Zhao Guohua(赵国华), He Haiyang(何海洋). The influence of carbon electrode immersed with KOH by different methods on EDLC [J]. Hi-Tech Fiber & Application (高科技纤维与应用), 2004(6):24-27
|