[1] |
GE Z Q, SONG Z H, GAO F R. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3543-3562.
|
[2] |
解翔, 侍洪波. 多稳态化工过程的全局监控策略[J]. 化工学报, 2012, 63(7):2156-2162. XIE X, SHI H B. Global monitoring strategy for multimode chemical processes[J]. CIESC Journal, 2012, 63(7):2156-2162.
|
[3] |
钟娜, 邓晓刚, 徐莹. 基于LECA的多工况过程故障检测方法[J]. 化工学报, 2015, 66(12):4929-4940. ZHONG N, DENG X G, XU Y. Fault detection method based on LECA for multimode process[J]. CIESC Journal, 2015, 66(12):4929-4940.
|
[4] |
KIM D, LEE I B. Process monitoring based on probabilistic PCA[J]. Chemometrics & Intelligent Laboratory Systems, 2003, 67(2):109-123.
|
[5] |
许仙珍, 谢磊, 王树青. 基于PCA混合模型的多工况过程监控[J]. 化工学报, 2011, 62(3):743-752. XU X Z, XIE L, WANG S Q. Multi-mode process monitoring method based on PCA mixture model[J]. CIESC Journal, 2011, 62(3):743-752.
|
[6] |
夏陆岳, 潘海天, 周猛飞, 等. 基于改进多尺度主元分析的丙烯聚合过程监测与故障诊断[J]. 化工学报, 2011, 62(8):2312-2317. XIA L Y, PAN H T, ZHOU M F, et al. Process monitoring and fault diagnosis of propylene polymerization based on improved multiscale principal component analysis[J]. CIESC Journal, 2011, 62(8):2312-2317.
|
[7] |
JIANG Q C, YAN X F. Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring[J]. AIChE Journal, 2014, 60(3):949-965.
|
[8] |
DENG X G, TIAN X M, CHEN S. Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 127(16):195-209.
|
[9] |
WISE B M, RICKER N L, VELTKAMP D F, et al. A theoretical basis for the use of principal component models for monitoring multivariate processes[J]. Process Control & Quality, 1990, 1(1):41-51.
|
[10] |
KU W, STORER R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems, 1995, 30(1):179-196.
|
[11] |
WANG X, KRUGER U, IRWIN G W, et al. Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis[J]. IEEE Transactions on Control Systems Technology, 2008, 16(1):122-129.
|
[12] |
YU J B. Local and global principal component analysis for process monitoring[J]. Journal of Process Control, 2012, 22(7):1358-1373.
|
[13] |
CHERRY G A, QIN S J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis[J]. IEEE Transactions on Semiconductor Manufacturing, 2006, 19(2):159-172.
|
[14] |
GE Z Q, ZHANG M G, SONG Z H. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. Journal of Process Control, 2010, 20(5):676-688.
|
[15] |
GE Z Q, SONG Z H. Distributed PCA model for plant-wide process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(5):1947-1957.
|
[16] |
WANG B, JIANG Q C, YAN X F. Fault detection and identification using a Kullback-Leibler divergence based multi-block principal component analysis and Bayesian inference[J]. Korean Journal of Chemical Engineering, 2014, 31(6):930-943.
|
[17] |
LI Y, XIE Z, ZHOU D H. Fault detection and isolation based on abnormal sub-regions using the improved PCA[J]. Journal of Chemical Engineering of Japan, 2004, 37(4):514-522.
|
[18] |
WANG J Y, WANG Y, ZHAO S G, et al. Maximum mutual information regularized classification[J]. Engineering Applications of Artificial Intelligence, 2015, 37(37):1-8.
|
[19] |
KRASKOV A, STÖGBAUER H, GRASSBERGER P. Estimating mutual information[J]. Physical Review E:Statistical Nonlinear & Soft Matter Physics, 2004, 69(6):279-307.
|
[20] |
SILVERMAN B W. Density estimation for statistics and data analysis[J]. Journal of the American Statistical Association, 1988, 83(401):600-620.
|
[21] |
DENG X G, TIAN X M. Sparse kernel locality preserving projection and its application in nonlinear process fault detection[J]. Chinese Journal of Chemical Engineering, 2013, 21(2):163-170.
|
[22] |
DENG X G, TIAN X M. Multimode process fault detection using local neighborhood similarity analysis[J]. Chinese Journal of Chemical Engineering, 2014, 22(11):1260-1267.
|