[1] |
GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562.
|
[2] |
QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2): 220-234.
|
[3] |
ZHANG Y, MA C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS[J]. Chemical Engineering Science, 2011, 66(1): 64-72.
|
[4] |
刘强, 柴天佑, 秦泗钊, 等. 基于数据和知识的工业过程监视及故障诊断综述[J]. 控制与决策, 2010, 25(6): 801-807.
|
|
LIU Q, CHAI T Y, QIN S Z, et al. Progress of data-driven and knowledge-driven process monitoring and fault diagnosis for industry process[J]. Control & Decision, 2010, 25(6): 801-807.
|
[5] |
李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9.
|
|
LI H, XIAO D Y. Survey on data driven fault diagnosis methods[J]. Control & Decision, 2011, 26(1): 1-9.
|
[6] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//IEEE International Joint Conference on Neural Networks. Proceedings. IEEE Xplore, 2004, 2: 985-990.
|
[7] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
|
[8] |
HUANG G B, WANG D H, LAN Y. Extreme learning machines: a survey[J]. International Journal of Machine Learning & Cybernetics, 2011, 2(2): 107-122.
|
[9] |
GAO H, HUANG G B, SONG S, et al. Trends in extreme learning machines: a review[J]. Neural Networks the Official Journal of the International Neural Network Society, 2015, 61: 32.
|
[10] |
HUANG G B. An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376-390.
|
[11] |
HUANG G B, CHEN L, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892.
|
[12] |
HUANG G B, CHEN L. Enhanced random search based incremental extreme learning machine[J]. Neurocomputing, 2008, 71(16/17/18): 3460-3468.
|
[13] |
HUANG G B, DING X, ZHOU H. Optimization method based extreme learning machine for classification[J]. Neurocomputing, 2010, 74(1/2/3): 155-163.
|
[14] |
HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 2012, 42(42): 513-529.
|
[15] |
HUANG G B. An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376-390.
|
[16] |
CAMBRIA E, HUANG G B, KASUN L L C, et al. Extreme learning machines[J]. Intelligent Systems, IEEE, 2013, 28(6): 30-59.
|
[17] |
ZONG W, HUANG G B, CHEN Y. Weighted extreme learning machine for imbalance learning[J]. Neurocomputing, 2013, 101(3): 229-242.
|
[18] |
KASUN L L C, ZHOU H, HUANG G B, et al. Representational learning with ELMs for big data[J]. Intelligent Systems IEEE, 2013, 28(6): 31-34.
|
[19] |
MARTINEZ-REGO D, FONTENLA-ROMERO O, PEREZ-SANCHEZ B, et al. Fault Prognosis of Mechanical Components Using On-Line Learning Neural Networks[M]//Artificial Neural Networks-ICANN 2010. Berlin , Heidelberg: Springer, 2010: 60-66.
|
[20] |
MUHAMMAD I G, TEPE K E, ABDEL-RAHEEM E. QAM equalization and symbol detection in OFDM systems using extreme learning machine[J]. Neural Computing and Applications, 2013, 22(3): 491-500.
|
[21] |
WANG C, WEN C, LU Y. A fault diagnosis method by using extreme learning machine[C]//International Conference on Estimation, Detection and Information Fusion. IEEE, 2015: 318-322.
|
[22] |
LIU J, CHEN Y, LIU M, et al. SELM: Semi-supervised ELM with application in sparse calibrated location estimation[J]. Neurocomputing, 2011, 74(16): 2566-2572.
|
[23] |
IOSIFIDIS A, TEFAS A, PITAS I. Regularized extreme learning machine for multi-view semi-supervised action recognition[J]. Neurocomputing, 2014, 145(18): 250-262.
|
[24] |
HUANG G, SONG S, GUPTA J N, et al. Semi-supervised and unsupervised extreme learning machines[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2405-2417.
|
[25] |
ZHOU Y, LIU B, XIA S, et al. Semi-supervised extreme learning machine with manifold and pairwise constraints regularization[J]. Neurocomputing, 2015, 149(PA): 180-186.
|
[26] |
AVERDI B, MARQES I, GRANA M. Spatially regularized semisupervised ensembles of extreme learning machines for hyperspectral image segmentation[J]. Neurocomputing, 2015, 149: 373-386.
|
[27] |
ROWEIS S T, SAUAL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
|
[28] |
ZHAO H. Combining labeled and unlabeled data with graph embedding[J]. Neurocomputing, 2006, 69(16/17/18): 2385-2389.
|
[29] |
SINDHWANI V, NIYOGI P, BELKIN M. Beyond the point cloud: from transductive to semi-supervised learning[C]//ICML'05 Proceedings of the 22nd International Conference on Machine Learning Bonn, Germany, 2005: 824-831.
|
[30] |
MELACCI S, BELKIN M. Laplacian support vector machines trained in the primal[J]. Journal of Machine Learning Research, 2009, 12(5): 1149-1184.
|
[31] |
LEE J M, QIN S J, LEE I B. Fault detection of non-linear processes using kernel independent component analysis[J]. Canadian Journal of Chemical Engineering, 2008, 85(4): 526-536.
|