CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 590-598.DOI: 10.11949/j.issn.0438-1157.20181349
• Process system engineering • Previous Articles Next Articles
Kaixiang PENG(),Chuanfang ZHANG(),Liang MA,Jie DONG,Ruihua JIAO,Peng TANG
Received:
2018-11-15
Revised:
2018-11-25
Online:
2019-02-05
Published:
2019-02-05
Contact:
Chuanfang ZHANG
通讯作者:
张传放
作者简介:
<named-content content-type="corresp-name">彭开香</named-content>(1971—),男,教授,<email>kaixiang@ustb.edu.cn</email>|张传放(1990—),男,博士研究生,<email>zhangchuanfang@126.com</email>
基金资助:
CLC Number:
Kaixiang PENG, Chuanfang ZHANG, Liang MA, Jie DONG, Ruihua JIAO, Peng TANG. System-levels-based holographic fault diagnosis for complex industrial processes[J]. CIESC Journal, 2019, 70(2): 590-598.
彭开香, 张传放, 马亮, 董洁, 焦瑞华, 唐鹏. 面向系统层级的复杂工业过程全息故障诊断[J]. 化工学报, 2019, 70(2): 590-598.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181349
变量 | 类型 | 描述 | 单位 |
---|---|---|---|
G1~G7 | 过程变量 | 第i机架的平均辊缝(i=1,…,7) | mm |
F1~F7 | 过程变量 | 第i机架的轧制力(i=1,…,7) | MN |
B2~B7 | 过程变量 | 第i机架的弯辊力(i=2,…,7) | MN |
S | 质量变量 | 平直度 | I |
Table 1 Description of process and quality variables in hot strip mill process
变量 | 类型 | 描述 | 单位 |
---|---|---|---|
G1~G7 | 过程变量 | 第i机架的平均辊缝(i=1,…,7) | mm |
F1~F7 | 过程变量 | 第i机架的轧制力(i=1,…,7) | MN |
B2~B7 | 过程变量 | 第i机架的弯辊力(i=2,…,7) | MN |
S | 质量变量 | 平直度 | I |
1 | 葛志强. 复杂工业过程统计监测方法研究[D]. 杭州: 浙江大学, 2009. |
GeZ Q. Statistical process monitoring methods for complex processes[D]. Hangzhou: Zhejiang University, 2009. | |
2 | BeardR V. Failure accommodation in linear systems through self-reorganization[D]. Massachusetts: MIT, 1971. |
3 | VenkatasubramanianV, RengaswamyR, YinK. A review of process fault detection and diagnosis (II): Quantitative models and search strategies[J]. Computers and Chemical Engineering, 2003, 27: 313-326. |
4 | VenkatasubramanianV, RengaswamyR, YinK. A review of process fault detection and diagnosis (III): Process history based methods[J]. Computers and Chemical Engineering, 2003, 27: 327-346. |
5 | 周东华, 席裕庚, 张钟俊. 故障检测与诊断技术[J]. 控制理论与应用, 1991, 8(1): 1-10. |
ZhouD H, XiY G, ZhangZ J. A survey on fault detection and diagnostics techniques[J]. Control theory and applications, 1991, 8(1): 1-10. | |
6 | MacGregorJ F, JaeckleC, KiparissidesC, et al. Process monitoring and diagnosis by multiblock PLS methods[J]. AIChE Journal, 1994, 40(5): 826-838. |
7 | WesterhuisJ A, KourtiT, MacGregorJ F. Analysis of multiblock and hierarchical PCA and PLS models[J]. Journal of Chemometrics, 1998, 12(5): 301-321. |
8 | QinS J, ValleS, PiovosoM J. On unifying multiblock analysis with application to decentralized process monitoring[J]. Journal of Chemometrics, 2001, 15(9): 715-742. |
9 | YuanT, QinS J. Root cause diagnosis of plant-wide oscillations using Granger causality[J]. Journal of Process Control, 2014, 24(2):450-459. |
10 | GeZ Q, SongZ H. Distributed PCA model for plant-wide process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 1947-1957. |
11 | GeZ Q, ZhangM G, SongZ H. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. Journal of Process Control, 2010, 20(5): 676-688. |
12 | ZhuJ L, GeZ Q, SongZ H, et al. Large-scale plant-wide process modeling and hierarchical monitoring: a distributed Bayesian network approach[J]. Journal of Process Control, 2018, 65: 91-106. |
13 | HuangJ P, YanX F. Relevant and independent multi-block approach for plant-wide process and quality-related monitoring based on KPCA and SVDD[J]. ISA transactions, 2018, 73: 257-267. |
14 | PengK X, ZhangK, YouB, et al. Quality-related prediction and monitoring of multi-mode processes using multiple PLS with application to an industrial hot strip mill[J]. Neurocomputing, 2015, 168(10): 1094-1103. |
15 | PengK X, ZhangK, YouB, et al. A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes[J]. IEEE Trans. Ind. Electron., 2016, 63(4): 2615-2624. |
16 | 李伟. 复杂系统的智能故障诊断技术现状及其发展趋势[J].计算机仿真, 2004, 21(10):4-7. |
LiW. Advance of intelligent fault diagnosis for complex system and its present situation [J]. Computer Simulation, 2004, 21(10):4-7. | |
17 | LeeJ M, QinS J, LeeI B. Fault detection and diagnosis of multivariate process based on modified independent component analysis[J]. AIChE Journal, 2006, 52: 3501-3514. |
18 | KomulainenT, SouranderM, Jamsa-JounelaS L. An online application of dynamic PLS to a dearomatization process[J]. Computer and Chemical Engineering, 2004, 28(12): 2611-2619. |
19 | PierreC. Independent component analysis. A new concept?[J]. Signal Processing, 1994, 36: 287-314. |
20 | HuangB. Bayesian methods for control loop monitoring and diagnosis[J]. Journal of Process Control, 2008, 18(9): 829-838. |
21 | QinS J. Statistical process monitoring: basics and beyond[J]. Journal of Chemometrics, 2003, 17(8/9): 480-502. |
22 | YpmaA, TaxD M J, DuinR P W. Robust machine fault detection with independent component analysis and support vector data description[C]// Neural Networks for Signal Processing Ix, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop. Madison, WI, USA: IEEE, 2002: 67-76. |
23 | YoonS, MacGregorJ F. Fault diagnosis with multivariate statistical models (I): Using steady state fault signatures[J]. Journal of Process Control, 2001, 11(4): 387-400. |
24 | LiG, QinS J, YuanT. Data-driven root cause diagnosis of faults in process industries[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 159: 1-11. |
25 | MacGregorJ F, KourtiT. Statistical process control of multivariate processes[J]. Control Engineering Practice, 1995, 3(3): 403-414 |
26 | 姜周曙, 翁翔彬, 王剑, 等. 反渗透海水淡化系统“脱盐率与产水量下降”故障树分析[J]. 化工学报, 2014, 65(6): 2172-2178. |
JiangZ S, WengX B, WangJ, et al. Fault tree analysis on decreases of desalination rate and permeate flow rate of seawater reverse osmosis desalination system[J]. CIESC Journal, 2014, 65(6): 2172-2178. | |
27 | TadaoM. Petri nets: properties, analysis and applications[J]. Proceeding of the IEEE, 1989, 77(4): 541-580. |
28 | GrangerC W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37(3): 424-438. |
29 | FrankE, HallM. A simple approach to ordinal classification[C]// European Conference on Machine Learning. London, UK: Springer-Verlag, 2001: 145-156. |
30 | Cao-VanK, BaetsB D. Growing decision trees in an ordinal setting[J]. International Journal of Intelligent Systems, 2003, 18(7):733-750. |
31 | HuQ H, GuoM Z, YuD R, et al. Information entropy for ordinal classification[J]. Science China Information Sciences, 2010, 53(6):1188-1200. |
32 | YeC, KilgourD M, HipelK W. Using a benchmark in case-based multiple-criteria ranking[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2009, 39(2):358-368. |
33 | 梁晴晴, 韩华, 崔晓钰, 等. 基于主元分析-概率神经网络的制冷系统故障诊断[J]. 化工学报, 2016, 67(3): 1022-1031. |
LiangQ Q, HanH, CuiX Y, et al. Fault diagnosis for refrigeration system based on PCA-PNN [J]. CIESC Journal, 2016, 67(3): 1022-1031. | |
34 | 黄景德, 崔山宝, 王兴贵. 正向推理型故障模糊预测系统的知识表示与推理[J]. 计算机工程, 2001, 27(2): 78-79. |
HuangJ D, CuiS B, WangX G, et al. Knowledge expression and reasoning of fault fuzzy forecast system based on forewards reasoning[J]. Computer Engineering, 2001, 27(2): 78-79. | |
35 | 刘建国, 姜秀民, 王辉, 等. 流化床内石英砂的热破碎及其灰色预测模型[J]. 化工学报, 2008, 59(2): 328-334. |
LiuJ G, JiangX M, WangH, et al. Thermal fragmentation of quartzite particles in fluidized bed and gray forecasting model [J]. Journal of Chemical Industry and Engineering(China), 2008, 59(2):328-334. | |
36 | 李琨, 韩莹, 佘东生, 等. 基于IFOA-KELM-MEA模型的游梁式抽油机采油系统井下工况的短期预测[J]. 化工学报, 2017, 68(1): 188-198. |
LiK, HanY, SheD S, et al. IFOA-KELM-MEA model based transient prediction on down-hole working conditions of beam pumping units [J]. CIESC Journal, 2017, 68(1): 188-198. | |
37 | 赵旭. 基于统计学方法的过程监控与质量控制研究[D]. 上海: 上海交通大学, 2006. |
ZhaoX. Research on process monitoring and quality control based on statistical methods [D]. Shanghai: Shanghai Jiao Tong University, 2006. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[4] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[5] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[6] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[7] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[8] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[9] | Qian MING, Yi GAO, Jian HU, Shengjie LI, Jinjiang WANG. Virtual sensing method for leakage fault of heat exchanger [J]. CIESC Journal, 2023, 74(4): 1836-1846. |
[10] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[11] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[12] | Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis [J]. CIESC Journal, 2023, 74(4): 1446-1456. |
[13] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[14] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[15] | Yue SONG, Qicheng ZHANG, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Synthesis of MoS2-based single atom catalyst and its application in electrocatalysis [J]. CIESC Journal, 2023, 74(2): 535-545. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||