CIESC Journal ›› 2017, Vol. 68 ›› Issue (11): 4147-4153.DOI: 10.11949/j.issn.0438-1157.20161788
Previous Articles Next Articles
XUE Shuwen1, LI Yuqing1, XIAO Zhuonan1, WANG Yaxiong2, LI Ke1
Received:
2016-12-22
Revised:
2017-07-17
Online:
2017-11-05
Published:
2017-11-05
Supported by:
supported by the National Natural Science Foundation of China (51266008) and Inner Mongolia Autonomous Region Outstanding Youth Cultivation Fund (2015JQ05).
薛淑文1, 李雨晴1, 肖卓楠1, 王亚雄2, 李科1
通讯作者:
李科
基金资助:
国家自然科学基金项目(51266008);内蒙古自治区杰出青年培育基金项目(2015JQ05)。
CLC Number:
XUE Shuwen, LI Yuqing, XIAO Zhuonan, WANG Yaxiong, LI Ke. Boiling heat transfer characteristics of water-based SiO2 nanofluids[J]. CIESC Journal, 2017, 68(11): 4147-4153.
薛淑文, 李雨晴, 肖卓楠, 王亚雄, 李科. 水基SiO2纳米流体沸腾换热特性[J]. 化工学报, 2017, 68(11): 4147-4153.
[1] | CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows[J]. ASME Fed Applied Physics A, 1995, 231:99-105. |
[2] | 凌智勇, 邹涛, 丁建宁, 等. 纳米流体黏度特性[J]. 化工学报, 2012, 63(5):1409-1414. LING Z Y, ZOU T, DING J N, et al. Shear viscosity of nanofluids mixture[J]. CIESC Journal, 2012, 63(5):1409-1414. |
[3] | 郑兆志, 何钦波, 刘玉东. 水基氧化石墨烯纳米流体表面张力实验研究[J]. 热科学与技术, 2015, 14(3):203-207. ZHENG Z Z, HE Q B, LIU Y D. Experimental investigation on surface tension of water-based graphene oxide nanofluids[J]. Journal of Thermal Science and Technology, 2015, 14(3):203-207. |
[4] | 刘玉东, 胡光华, 刘玉民, 等. TiO2-H2O纳米流体热物性研究[J]. 化工新型材料, 2014, 42(3):125-129. LIU Y D, HU G H, LIU Y M, et al. Investigation on thermal properties of TiO2-H2O nanofluids[J]. New Chemical Materials, 2014, 42(3):125-129. |
[5] | 牛广清, 凌智勇, 张忠强, 等. 温度对Al2O3-H2O纳米流体粘度特性影响研究[J]. 传感器与微系统, 2015, 34(12):54-56. NIU G Q, LING Z Y, ZHANG Z Q, et al. Research on influence of temperature on viscosity property of Al2O3-H2O nanofluid[J]. Transducer and Microsystem Technologies, 2015, 34(12):54-56. |
[6] | 武婷婷, 骆仲泱, 倪明江, 等. 纳米流体黏度影响因素的试验研究[J]. 动力工程学报, 2011, 31(6):449-453. WU T T, LUO Z Y, NI M J, Experimental study on factors influencing viscosity of nanofluids[J]. Journal of Chinese Society of Power Engineering, 2011, 31(6):449-453. |
[7] | 贾涛, 王瑞祥, 张敏. 多壁碳纳米管水基纳米流体的对流换热特性[J]. 制冷学报, 2015, 36(1):35-39. JIA T, WANG R X, ZHANG M. Convective heat transfer characteristics of MWNTs water-based nanofluid[J]. Journal of Refrigeration, 2015, 36(1):35-39. |
[8] | 楼彬, 徐旭, 王文龙, 等. 水基碳纳米管纳米流体在矩形腔内的自然对流传热[J]. 浙江大学学报(工学版), 2014, 48(12):2196-2201. LOU B, XU X, WANG W L, et al. Natural convection heat transfer of aqueous nanofluids with carbon nanotubes in a rectangular enclosure[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(12):2196-2201. |
[9] | 马连湘, 常强, 刘晓光, 等. 水基碳管纳米流体对流换热实验研究[J]. 青岛科技大学学报(自然科学版), 2016, 37(2):196-200. MA L X, CHANG Q, LIU X G, et al. Experimental study on convective heat transfer of water-based carbon nanotubes nanofluids[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2016, 37(2):196-200. |
[10] | 陆鑫, 杨峻. SiO2-DW纳米流体重力热管传热性能试验研究[J]. 现代化工, 2015, 35(11):145-147. LU X, YANG J. Heat transfer characteristics of SiO2-DW nanofluid gravity heat pipe[J]. Modern Chemical Industry, 2015, 35(11):145-147. |
[11] | 朱晨, 匡波, 孙伟, 等. 纳米流体对倾斜朝下加热面沸腾换热特性的影响[J]. 原子能科学技术, 2014, 48:268-272. ZHU C, KUANG B, SUN W, et al. Influence of nanofluids on boiling heat transfer characteristics of inclined downward-facing heating surface[J]. Atomic Energy Science and Technology, 2014, 48:268-272. |
[12] | WEN D, DING Y. Experimental investigation into the poolboiling heat transfer of aqueous based alumina nanofluids[J]. Journal of Nanoparticle Research, 2005, 7:265-274. |
[13] | PARK K J, JUNG D S, SHIM S E. Nucleate boiling heattransfer in aqueous solutions with carbon nanotubes up tocritical heat fluxes[J]. International Journal of Multi-phase Flow, 2009, 35(6):525-32. |
[14] | 唐潇, 刁彦华, 赵耀华, 等. δ-Al2O3-R141b纳米流体的池内核态沸腾传热特性[J]. 化工学报, 2012, 63(1):64-70. TANG X, DIAO Y H, ZHAO Y H, et al. Nucleate pool boiling heat transfer of δ-Al2O3-R141b nanofluid on horizontal plate[J]. CIESC Journal, 2012, 63(1):64-70. |
[15] | LIU Z, LIAO L. Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling[J]. International Journal of Heat and Mass Transfer, 2008, 51:2593-2602. |
[16] | 施明恒, 帅美琴, 赖彦愕, 等. 纳米颗粒悬浮液池内泡状沸腾的实验研究[J]. 工程热物理学报, 2006, 27(2):298-300. SHI M H, SHUAI M Q, LAI Y E, et al. Experimental study of pool boiling heat transfer of nano-particle suspensions on a plate surface[J]. Journal of Engineering Thermalphysics, 2006, 27(2):298-300. |
[17] | KATHIRAVAN R, KUMAR R, GUPTA A. Pool boiling characteristics of carbon nanotube based nanofluids over a horizontal tube[J]. Journal of Thermal Science and Engineering Applications, 2009, 1(2):022001-022008. |
[18] | 薛怀生. 多壁碳纳米管纳米流体的大容积沸腾[J]. 热科学与技术, 2009, 8(4):295-301. XUE H S. Pool boiling performance for multi-walled carbon nanotube nanofluid[J]. Journal of Thermal Science and Technology, 2009, 8(4):295-301. |
[19] | BANG I C, CHANG S H. Boiling heat transfer performance and phenomena of Al2O3-water nanofluids from a plain surface in a pool[J]. International Journal of Heat and Mass Transfer, 2005, 48:2407-2419. |
[20] | 施赛燕, 崔晓钰, 周宇, 等. 石墨烯/去离子水纳米流体振荡热管传热性能[J]. 化工学报, 2016, 67(12):4943-4950. SHI S Y, CUI X Y, ZHOU Y, et al. Heat transfer performance of pulsating heat pipe with grapheme aqueous nanofluids[J]. CIESC Journal, 2016, 67(12):4943-4950. |
[21] | NARAYAN G P, ANOOP K B, DAS S K. Mechanism of enhancement/deterioration of boiling heat transfer using stabel nanoparticle suspensions over vertical tubes[J]. Journal of Applied Physics, 2007, 102(7):4317-4317. |
[22] | 刘冉, 夏国栋, 杜墨. 三角形微通道内纳米流体流动与换热特性[J]. 化工学报, 2016, 67(12):4936-4943. LIU R, XIA G D, DU M. Characteristics of convective heat transfer in triangular microchannel heat sink using different nanofluids[J]. CIESC Journal, 2016, 67(12):4936-4943. |
[23] | 赵言冰, 施明恒. 纳米尺度固体悬浮颗粒强化池沸腾换热的实验研究[J]. 能源研究与利用, 2002, (3):18-20. ZHAO Y B, SHI M H. Experimental research on boiling heat transfer of nm sized solid suspension particles from strengthening pool[J]. Energy Research and Utilization, 2002, (3):18-20. |
[24] | GERARDI C, BUONGIORNO J, HU L W, et al. Infrared thermometry study of nanofluid pool boiling phenomena[J]. Nanoscale Research Letters, 2011, 6:232. |
[25] | 许世民, 郎中敏, 王亚雄, 等. 羟基化多壁碳纳米管/R141b纳米流体核沸腾[J]. 化工学报, 2015, 66(11):4424-4430. XU S M, LANG Z M, WANG Y X, et al. Nucleate boiling heat transfer of hydroxylated carbon nano-tubes/R141b nanofluids on smooth plate[J]. CIESC Journal, 2015, 66(11):4424-4430. |
[26] | 吴晗, 杨峻. 多壁碳纳米管-水纳米流体导热机理及重力热管实验研究[J]. 化工学报, 2017, 68(6):2315-2320. WU H, YANG J. Thermal conduction mechanism of multi-walled carbon nanotubes-deionized water nanofluids and experimental research in gravity heat pipe[J]. CIESC Journal, 2017, 68(6):2315-2320. |
[27] | 刘振华, 廖亮. 纳米流体池内沸腾时传热面上的吸附和烧结现象[J]. 上海交通大学学报, 2016, 3:352-356. LIU Z H, LIAO L. The sorption and agglutination phenomenon on a plain heated surface during pool boiling of nano-fluids[J]. Journal of Shanghai Jiaotong University, 2016, 3:352-356. |
[28] | LI K, LI X D, TU J Y, et al. A mathematic model considering the effect of brownian motion for subcooled nucleste pool boiling of dilute nanofluids[J]. International Journal of Heat and Mass Transfer, 2015, 84:46-53. |
[29] | 肖波齐, 范金土, 蒋国平, 等. 纳米流体对流换热机理分析[J]. 物理学报, 2013, 34(6):1096-1100. XIAO B Q, FAN J T, JIANG G P, et al. Analysis of convection heat transfer mechanism in nanofluids[J]. Acta Phys. Sin., 2013, 34(6):1096-1100. |
[30] | 周乐平, 王补宣. 颗粒尺寸与表面吸附对低浓度非金属纳米颗粒悬浮液有效热导率的影响[J]. 自然科学进展, 2003, 13(4):426-429. ZHOU L P, WANG B X. Effect of particle size and surface adsorption of low concentration of non metal nanoparticles suspension effective thermal conductivity[J]. Progress in Natural Science, 2003, 13(4):426-429. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[3] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[4] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[5] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[6] | Mengbin ZHANG, Rui LI, Jiajie ZHANG, Suxia MA, Jiansheng ZHANG. Experimental study on dielectric properties of coal ash based on coplanar capacitance principle [J]. CIESC Journal, 2023, 74(7): 3028-3037. |
[7] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[8] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[9] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[10] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[11] | Jianxun CHEN, Jinping LIU, Xiongwen XU, Yinhao YU. Numerical simulation and performance optimization of a new loop gravity heat pipe [J]. CIESC Journal, 2023, 74(2): 721-734. |
[12] | Feng LIU, Quan WANG, Panyu WU, Guo WEI, Xiang HE. Effect of internal phase particle size on vibration resistance of on-site mixed emulsion explosive matrix [J]. CIESC Journal, 2022, 73(9): 4217-4225. |
[13] | Tongpeng LU, Xiaolin PAN, Hongfei WU, Yu LI, Haiyan YU. Effect of organic flocculant on settling performance of iron-bearing minerals and its adsorption mechanism [J]. CIESC Journal, 2022, 73(9): 4122-4132. |
[14] | Hongxia CHEN, Linhan LI, Xiang GAO, Yiran WANG, Yuxiang GUO. Enhancement of nucleate boiling by temporary modulation of wettability during the bubble dynamic process [J]. CIESC Journal, 2022, 73(4): 1557-1565. |
[15] | Xiongkang SUN, Qiang LI. Research on enhanced boiling heat transfer of multilevel composite wick structure [J]. CIESC Journal, 2022, 73(3): 1127-1135. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 453
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 465
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||