[1] |
SHIH Y J, LIN C P, HUANG Y H. Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater[J]. Separation and Purification Technology, 2013, 104:100-105.
|
[2] |
PRIYA P G, BASHA C A, RAMAMURTHI V, et al. Recovery and reuse of Ni(Ⅱ) from rinsewater of electroplating industries[J]. Journal of Hazardous Materials, 2009, 163:899-909.
|
[3] |
LEE C G, LEE S, PARK J A, et al. Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam[J]. Chemosphere, 2017, 166:203-211.
|
[4] |
HOSSEINI S S, BRINGAS E, TAN N R, et al. Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment:a review[J]. Journal of Water Process Engineering, 2016, 9:78-110.
|
[5] |
AL-SHANGNAG M, AL-QODAH Z, BANI-MELHEM K, et al. Heavy metal ions removal from metal plating wastewater using electrocoagulation:kinetic study and process performance[J]. Chemical Engineering Journal, 2015, 260:749-756.
|
[6] |
MOUSSAVI G, JIANNI F, SHEKOOHIYAN S. Advanced reduction of Cr(Ⅵ) in real chrome-plating wastewater using a VUV photoreactor:batch and continuous-flow experiments[J]. Separation and Purification Technology, 2015, 151:218-224.
|
[7] |
HUANG X F, XU Y, SHAN C, et al. Coupled Cu(Ⅱ)-EDTA degradation and Cu(Ⅱ) removal from acidic wastewater by ozonation:performance, products and pathways[J]. Chemical Engineering Journal, 2016, 299:23-29.
|
[8] |
LI T, WANG H J, DONG W Y, et al. Phosphate removal during Fe(Ⅱ) oxidation in the presence of Cu(Ⅱ):characteristics and application for electro-plating wastewater treatment[J]. Separation and Purification Technology, 2014, 132:388-395.
|
[9] |
KABDA?LI I, ARSLAN T, ARSLAN-ALATON I, et al. Organic matter and heavy metal removals from complexed metal plating effluent by the combined electrocoagulation/Fenton process[J]. Water Science & Technology, 2010, 61:2617-2624.
|
[10] |
BABUPONNUSAMI A, MUTHUKUMAR K. A review on Fenton and improvements to the Fenton process for wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2014, 2:557-572.
|
[11] |
PLIEGO G, ZAZO J A, GARCIA-MUÑOZ P, et al. Trends in the intensification of the Fenton process for wastewater treatment:an overview[J]. Critical Reviews in Environmental Science and Technology, 2015, 45:2611-2692.
|
[12] |
JU Y M, YANG S G, DING Y C, et al. Microwave-enhanced H2O2-based process for treating aqueous malachite green solutions:intermediates and degradation mechanism[J]. Journal of Hazardous Materials, 2009, 171(1/2/3):123-132.
|
[13] |
PRASANNAKUMAR B R, REGUPATHI I, MURUGESAN T. An optimization study on microwave irradiated decomposition of phenol in the presence of H2O2[J]. Journal of Chemical Technology & Biotechnology, 2009, 84(1):83-91.
|
[14] |
RAVERA M, BUICO A, GOSETTI F, et al. Oxidative degradation of 1,5-naphthalenedisulfonic acid in aqueous solutions by microwave irradiation in the presence of H2O2[J]. Chemosphere, 2009, 74(10):1309-1314.
|
[15] |
BI X Y, YANG H Y, SUN P S. Microwave-induced oxidation progress for treatment of imidacloprid pesticide wastewater[J]. Applied Mechanics & Materials, 2012, 229/230/231:2489-2492.
|
[16] |
马莹莹. 铜类芬顿反应对电镀废水中有机物降解的研究[D]. 南昌:南昌航空大学, 2016:72. MA Y Y. Study on degradation of organic pollutants in electroplating waste water by Fenton-like reaction catalyzed by copper ions[D]. Nanchang:Nanchang Hangkong University, 2016:72.
|
[17] |
WANG N N, ZHENG T, JIANG J, et al. Cu(Ⅱ)-Fe(Ⅱ)-H2O2 oxidative removal of 3-nitroaniline in water under microwave irradiation[J]. Chemical Engineering Journal, 2015, 260:386-392.
|
[18] |
ZHONG X, BARBIER J, DUPREZ D, et al. Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support:effect on the activity for the CWPO of phenol reaction[J]. Applied Catalysis B:Environmental, 2012, 121:123-134.
|
[19] |
NIDHEESH P V, GANDHINATHI R. Trends in electro-Fenton process for water and wastewater treatment:an overview[J]. Desalination, 2012, 299:1-15.
|
[20] |
KIM S M, VOGELPOHL A. Degradation of organic pollutants by the photo-Fenton-process[J]. Chemical Engineering Technology, 1998, 21(2):187-191.
|
[21] |
XU Z, SHAN C, XIE B H, et al. Decomplexation of Cu(Ⅱ)-EDTA by UV/persulfate and UV/H2O2:efficiency and mechanism[J]. Applied Catalysis B:Envrionmental, 2017, 200:439-447.
|
[22] |
SUN J H, SUN S P, FAN M H, et al. A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process[J]. Journal of Hazardous Materials, 2007, 148(1/2):172-177.
|
[23] |
KABDA?LI I, ARSLAN T, ÖLMEZ-HANCI T, et al. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes[J]. Journal of Hazardous Materials, 2009, 165(1/2/3):838-845.
|
[24] |
LIU S T, HUANG J, YE Y, et al. Microwave enhanced Fenton process for the removal of methylene blue from aqueous solution[J]. Chemical Engineering Journal, 2013, 215/216:586-590.
|
[25] |
ZALAT O A, ELSAYED M A. A study on microwave removal of pyridine from wastewater[J]. Journal of Environmental Chemical Engineering, 2013, 1:137-143.
|
[26] |
STASINAKIS A S. Use of selected advanced oxidation processes (AOPs) for wastewater treatment-a mini review[J]. Global NEST Journal, 2008, 10(3):376-385.
|
[27] |
马莹莹, 吴跃辉, 李锦卫, 等. 镀铜废水中Cu-H2O2体系氧化降解硝基苯[J]. 环境工程学报, 2016, 10(9):4775-4782. MA Y Y, WU Y H, LI J W, et al. Oxidative degradation of nitrobenzene catalyzed by Cu2+-H2O2 system in copper rinse water[J]. Chinese Journal of Environmental Engineering, 2016, 10(9):4775-4782.
|
[28] |
WANG N N, WANG P. Study and application status of microwave in organic wastewater treatment-a review[J]. Chemical Engineering Journal, 2016, 283:193-214.
|
[29] |
孟令芝, 龚淑玲, 何永炳, 等. 有机波谱分析[M]. 4版. 武汉:武汉大学出版社, 2016:330-338. MENG L Z, GONG S L, HENG Y B, et al. Organic Spectrum Analysis[M]. 4th ed. Wuhan:Wuhan University Press, 2016:335-338.
|
[30] |
ZHAO X, GUO L, ZHANG B, et al. Photoelectrocatalytic oxidation of Cu(Ⅱ)-EDTA at the TiO2 electrode and simultaneous recovery of Cu(Ⅱ) by electrodeposition[J]. Environmental Science & Technology, 2013, 47(9):4480-4488.
|
[31] |
MOULDER J F, STICKLE W F, SOBOL P E. Handbook of X-Ray Photoelectron Spectrometers[M]. Minnesota:Perkin-Elemer Corporation Physical Electronics Division, 1992:32-35
|
[32] |
VASQUEZ R P. CuO by XPS[J]. Surface Science Spectra, 1998, 5(4):262-266.
|
[33] |
LAN S, XIONG Y, TIAN S, et al. Enhanced self-catalytic degradation of Cu-EDTA in the presence of H2O2/UV:evidence and importance of Cu-peroxide as a photo-active intermediate[J]. Applied Catalysis B:Environmental, 2016, 183:371-376.
|
[34] |
AKHAVAN O, AZIMIRAD R, SAFA S, et al. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts[J]. Journal of Materials Chemistry, 2011, 21(26):9634.
|