[1] |
刘冬. 弥散介质温度场重建的辐射反问题研究[D]. 杭州:浙江大学,2010. LIU D. Study on inverse radiation problem of temperature distribution reconstruction in participating medium[D]. Hangzhou:Zhejiang University,2010.
|
[2] |
HERNANDEZ R,BALLESTER J. Flame imaging as a diagnostic tool for industrial combustion[J]. Combustion and Flame,2008,155(3):509-528.
|
[3] |
CLARK M R,MCCANN D M,FORDE M C. Application of infrared thermography to the non-destructive testing of concrete and masonry bridges[J]. Ndt. & E. International,2003,36(4):265-275.
|
[4] |
HYUN K K,ANDREAS H H. A PDE-constrained SQP algorithm for optical tomography based on the frequency-domain equation of radiative transfer[J]. Inverse Problems,2009,25:1-20.
|
[5] |
罗剑峰.镜漫反射下多层吸收散射性介质内的瞬态耦合换热[D]. 哈尔滨:哈尔滨工业大学,2002. LUO J F. Transient coupled heat transfer in multi-layer absorbing-scattering composite with specular and diffuse reflection properties[D]. Harbin:Harbin Institute of Technology,2002.
|
[6] |
LIU D,YAN J H,WANG F,et al. Inverse radiation analysis of simultaneous estimation of temperature field and radiative properties in a two-dimensional participating medium[J]. International Journal of Heat and Mass Transfer,2010,53(21):4474-4481.
|
[7] |
MORÉ J J. The Levenberg-Marquardt algorithm:implementation and theory[J]. Lecture Notes in Mathematics,1977,630:105-116.
|
[8] |
CHAN R H,NG M K. Conjugate gradient methods for toeplitz systems[J]. Siam Review,1996,38:427-482.
|
[9] |
田娜. 偏微分方程反问题数值解研究和应用[D]. 无锡:江南大学,2012. TIAN N. Numerical methods for the PDE-based inverse problems and applications[D]. Wuxi:Jiangnan University,2012.
|
[10] |
江爱朋. 大规模简约空间SQP算法及其在过程优化系统中的应用[D]. 杭州:浙江大学,2005. JIANG A P. Research on large-scale reduced space SQP algorithm and its application to process systems[D]. Hangzhou:Zhejiang University,2005.
|
[11] |
石国春.关于序列二次规划算法求解非线性规划反问题的研究[D]. 兰州:兰州大学,2009. SHI G C. Research on algorithm of sequential quadratic programming for nonlinear programming problems[D]. Lanzhou:Lanzhou University,2009.
|
[12] |
TARVAINEN T,COX B T,KAIPIO J P,et al. Reconstructing absorption and scattering distributions in quantitative photoacoustic tomography[J]. Inverse Problems,2012,28(8):1067-1079.
|
[13] |
KLOSE A D,HIELSCHER A H. Optical tomography using the time-independent equation of radiative transfer(Ⅱ):Inverse model[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2002,72(5):715-732.
|
[14] |
GASSAN S A,ANDREAS H H. Three-dimensional optical tomography with the equation of radiative transfer[J]. Journal of Electronic Imaging,2003,12(4):594-601.
|
[15] |
ELALOUFI R,CARMINATI R,GREFFET J J. Time-dependent transport through scattering media:from radiative transfer to diffusion[J]. Journal of Optics A:Pure and Applied Optics,2002,4(5):S103-S108.
|
[16] |
QUAN H,GUO Z. Fast 3-D optical imaging with transient fluorescence signals[J]. Optics Express,2004,12(3):449-457.
|
[17] |
BOULANGER J,CHARETTE A. Numerical developments for short-pulsed near infra-red laser spectroscopy[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2005,91(3):297-318.
|
[18] |
ZIRAK R,KHADEMI M. An efficient method for model refinement in diffuse optical tomography[J]. Optics Communications,2007,279(2):273-284.
|
[19] |
QIAO Y B,QI H,CHEN Q,et al. Multi-start iterative reconstruction of the radiative parameter distributions in participating media based on the transient radiative transfer equation[J]. Optics Communications,2015,351:75-84.
|
[20] |
REN K,BAL G,HIELSCHER A H. Frequency domain optical tomography based on the equation of radiative transfer[J]. Siam Journal on Scientific Computing,2006,28(4):1463-1489.
|
[21] |
KIM H K,CHARETTE A. A sensitivity function-based conjugate gradient method for optical tomography with the frequency-domain equation of radiative transfer[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2007,104(1):24-39.
|
[22] |
JOSHI A,RASMUSSEN J C,SEVICK-MURACA E M,et al. Radiative transport-based frequency-domain fluorescence tomography[J]. Physics in Medicine and Biology,2008,53(8):2069-2088.
|
[23] |
CHU M,VISHWANATH K,KLOSE A D,et al. Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations[J]. Physics in Medicine and Biology,2009,54(8):2493-2509.
|
[24] |
BALIMA O,FAVENNEC Y,BOULANGER J,et al. Optical tomography with the discontinuous galerkin formulation of the radiative transfer equation in frequency domain[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2012,113(10):805-814.
|
[25] |
KLOSE A D. The forward and inverse problem in tissue optics based on the radiative transfer equation:a brief review[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2010,111(11):1852-1853.
|
[26] |
GUAN J,FANG S,GUO C. Optical tomography reconstruction algorithm based on the radiative transfer equation considering refractive index[J]. Computerized Medical Imaging and Graphics,2013,37(3):256-262.
|
[27] |
QI H,QIAO Y B,SUN S C,et al. Image reconstruction of two-dimensional highly scattering inhomogeneous medium using MAP-based estimation[J]. Mathematical Problems in Engineering,2015,2015:1-9.
|
[28] |
MARIN M,ASLLANAJ F,MAILLET D. Sensitivity analysis to optical properties of biological tissues subjected to a short-pulsed laser using the time-dependent radiative transfer equation[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2014,133:117-127.
|
[29] |
QIAO Y B,QI H,CHEN Q,et al. An efficient and robust reconstruction method for optical tomography with the time-domain radiative transfer equation[J]. Optics and Lasers in Engineering,2016,78:155-164.
|
[30] |
SAQUIB S S,HANSON K M,CUNNINGHAM G S.Model-based image reconstruction from time-resolved diffusion data[J]. Proc. SPIE,1997,3034:369-380.
|