[1] |
Climate Change 2013:the Physical Science Basis:Working Group Ⅰ Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2014.
|
[2] |
HALMANN M M, STEINBERG M. Greenhouse Gas Carbon Dioxide Mitigation:Science and Technology[M]. CRC Press, 1998.
|
[3] |
ZHAO M, MINETT A I, HARRIS A T. A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2[J]. Energy & Environmental Science, 2013, 6(1):25-40.
|
[4] |
SHARONOV V E, TYSHCHISHCHIN E A, MOROZ E M, et al. Sorption of CO2 from humid gases on potassium carbonate supported by porous matrix[J]. Russian Journal of Applied Chemistry, 2001, 74(3):409-413.
|
[5] |
TANG Y, LANDSKRON K. CO2-sorption properties of organosilicas with bridging amine functionalities inside the framework[J]. The Journal of Physical Chemistry C, 2010, 114(6):2494-2498.
|
[6] |
WÖRMEYER K, SMIRNOVA I. Adsorption of CO2, moisture and ethanol at low partial pressure using aminofunctionalised silica aerogels[J]. Chemical Engineering Journal, 2013, 225:350-357.
|
[7] |
WÖRMEYER K, SMIRNOVA I. Breakthrough measurements of CO2 through aminofunctionalised aerogel adsorbent at low partial pressure:experiment and modeling[J]. Microporous and Mesoporous Materials, 2014, 184:61-69.
|
[8] |
WÖRMEYER K, ALNAIEF M, SMIRNOVA I. Amino functionalised silica-aerogels for CO2-adsorption at low partial pressure[J]. Adsorption, 2012, 18(3/4):163-171.
|
[9] |
BEGAG R, KRUTKA H, DONG W, et al. Superhydrophobic amine functionalized aerogels as sorbents for CO2 capture[J]. Greenhouse Gases:Science and Technology, 2013, 3(1):30-39.
|
[10] |
齐国杰, 王淑娟, 刘今朝, 等. 燃煤烟气中SO2对氨法脱碳的影响[J]. 化工学报, 2012, 63(7):2202-2209. QI G J, WANG S J, LIU J Z, et al. Impact of SO2 on CO2 capture in coal-fired flue gas using aqueous ammonia[J]. CIESC Journal, 2012, 63(7):2202-2209.
|
[11] |
KHATRI R A, CHUANG S S C, SOONG Y, et al. Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture[J]. Energy & Fuels, 2006, 20(4):1514-1520.
|
[12] |
REZAEI F, JONES C W. Stability of supported amine adsorbents to SO2 and NOx in postcombustion CO2 capture (1):Single-component adsorption[J]. Industrial & Engineering Chemistry Research, 2013, 52(34):12192-12201.
|
[13] |
REZAEI F, JONES C W. Stability of supported amine adsorbents to SO2 and NOx in postcombustion CO2 capture (2):Multicomponent adsorption[J]. Industrial & Engineering Chemistry Research, 2014, 53(30):12103-12110.
|
[14] |
HALLENBECK A P, KITCHIN J R. Effects of O2 and SO2 on the capture capacity of a primary-amine based polymeric CO2 sorbent[J]. Industrial & Engineering Chemistry Research, 2013, 52(31):10788-10794.
|
[15] |
TAILOR R, ABBOUD M, SAYARI A. Supported polytertiary amines:highly efficient and selective SO2 adsorbents[J]. Environmental Science & Technology, 2014, 48(3):2025-2034.
|
[16] |
GUO M, ZHANG L, YANG Z, et al. Removal of CO2 by CaO/MgO and CaO/Ca9Al6O18 in the presence of SO2[J]. Energy & Fuels, 2011, 25(11):5514-5520.
|
[17] |
LUO C, ZHENG Y, YIN J, et al. Effect of sulfation during oxy-fuel calcination stage in calcium looping on CO2 capture performance of CaO-based sorbents[J]. Energy & Fuels, 2013, 27(2):1008-1014.
|
[18] |
WU Y, CHEN X, FAN M, et al. Development of K and N based composite CO2 sorbents (KN) dried with a supercritical fluid[J]. Chemical Engineering Journal, 2015, 262:1192-1198.
|
[19] |
WU Y, CHEN X, DONG W, et al. K2CO3/Al2O3 for capturing CO2 in flue gas from power plants (5):Carbonation and failure behavior of K2CO3/Al2O3 in the continuous CO2 sorption-desorption system[J]. Energy & Fuels, 2013, 27(8):4804-4809.
|
[20] |
WU Y, CHEN X. The negative effects of SO2 on CO2 capture with K2CO3/Al2O3[J]. Journal of Thermal Analysis and Calorimetry, 2015, 122(2):1041-1049.
|
[21] |
KIM K, YANG S, LEE J B, et al. Analysis of K2CO3/Al2O3 CO2 sorbent tested with coal-fired power plant flue gas:effect of SOx[J]. International Journal of Greenhouse Gas Control, 2012, 9:347-354.
|
[22] |
GUO Y, LI C, LU S, et al. Understanding the deactivation of K2CO3/AC for low-concentration CO2 removal in the presence of trace SO2 and NO2[J]. Chemical Engineering Journal, 2016, 301:325-333.
|
[23] |
MALEKI H. Recent advances in aerogels for environmental remediation applications:a review[J]. Chemical Engineering Journal, 2016, 300:98-118.
|
[24] |
余帆, 吴烨, 董伟, 等. 氨基修饰复合型钠基吸收剂的脱碳特性[J]. 化工学报, 2015, 66(10):4218-4227. YU F, WU Y, DONG W, et al. Carbonation characteristics of sodium-based sorbents with amino modification for CO2 capture[J]. CIESC Journal, 2015, 66(10):4219-4227.
|
[25] |
KONG Y, SHEN X, FAN M, et al. Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel[J]. Chemical Engineering Journal, 2016, 283:1059-1068.
|
[26] |
KONG Y, JIANG G, FAN M, et al. Use of one-pot wet gel or precursor preparation and supercritical drying procedure for development of a high-performance CO2 sorbent[J]. RSC Advances, 2014, 82(4):43448-43453.
|
[27] |
ZHENG F, TRAN D N, BUSCHE B J, et al. Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent[J]. Industrial & Engineering Chemistry Research, 2005, 44(9):3099-3105.
|
[28] |
CHANG A C C, CHUANG S S C, GRAY M M, et al. In-situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(aminopropyl) triethoxysilane[J]. Energy & Fuels, 2003, 17(2):468-473.
|
[29] |
KIM S, IDA J, GULIANTS V V, et al. Tailoring pore properties of MCM-48 silica for selective adsorption of CO2[J]. The Journal of Physical Chemistry B, 2005, 109(13):6287-6293.
|
[30] |
SOCRATES G. Infrared and Raman Characteristic Group Frequencies:Tables and Charts[M]. John Wiley & Sons, 2004.
|
[31] |
FERRARO J R. Infrared spectra of inorganic and coordination compounds (Nakamoto, Kazuo)[J]. Theory & Applications in Inorganic Chemistry, 1970, 5:88-97.
|
[32] |
COLTHUP N. Introduction to Infrared and Raman Spectroscopy[M]. Elsevier, 2012.
|