[1] |
YE J, GE L D, WU Y X. An application of improved RBF neural network in modulation recognition[J]. Acta Automatica Sinica, 2007, 33(6):652-654.
|
[2] |
CHEN S, WANG X X, BROWN D J. Sparse incremental regression modeling using correlation criterion with boosting search[J]. IEEE Signal Processing Letters, 2005, 12(3):198-201.
|
[3] |
CHEN S, WOLFGANG A, HARRIS C J, et al. Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems[J]. IEEE Transactions on Neural Networks, 2008, 19(5):737-745.
|
[4] |
CARA A, POMARES H, ROJAS I. A new methodology for the online adaptation of fuzzy self-structuring controllers[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(3):449-464.
|
[5] |
FAN H J, SONG Q. A linear recurrent kernel online learning algorithm with sparse updates[J]. Neural Networks, 2014, 50(3):142-153.
|
[6] |
NIU B, LI L. Adaptive neural network tracking control for a class of switched strict feedback nonlinear systems with input delay[J]. Neurocomputing, 2016, 173(3):2121-2128.
|
[7] |
HAN H G, LI Y, GUO Y N, et al. A soft computing method to predict sludge volume index based on a recurrent self-organizing neural network[J]. Applied Soft Computing, 2016, 38(1):477-486.
|
[8] |
ZHANG H, WANG Z, LIU D. A comprehensive review of stability analysis of continuous-time recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(7):1229-1262.
|
[9] |
LEE W, LEE S, PARK P. Improved stability criteria for recurrent neural networks with interval time-varying delays via new Lyapunov functionals[J]. Neurocomputing, 2015, 155(1):128-134.
|
[10] |
XIE T, YU H, HEWLETT J, et al. Fast and efficient second-order method for training radial basis function networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(4):609-619.
|
[11] |
WANG X, YU J, LI C, et al. Robust stability of stochastic fuzzy delayed neural networks with impulsive time window[J]. Neural Networks, 2015, 67(1):84-91.
|
[12] |
HAN H G, WU X L, QIAO J F. Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm[J]. IEEE Transactions on Cybernetics, 2014, 44(4):554-564.
|
[13] |
MENG D, PEI Z. Dynamic adaptive learning algorithm based on two-fuzzy neural-networks[J]. Neurocomputing, 2014, 125(1):88-94.
|
[14] |
CRUZ D, MAIA R, SILVA L, et al. A bee-inspired data clustering approach to design RBF neural network classifiers[J]. Neurocomputing, 2016, 172(3):427-437.
|
[15] |
KARAYIANNNIS N B, MI G W. Growing radial basis neural networks:merging supervised and unsupervised learning with network growth techniques[J]. IEEE Transactions on Neural Network, 1997, 8(6):1492-1506.
|
[16] |
SUBRAHMANYA N, SHIN Y C. Constructive training of recurrent neural networks using hybrid optimization[J]. Neurocomputing, 2010, 73(13):2624-2631.
|
[17] |
HSU C F. Adaptive backstepping Elman-based neural control for unknown nonlinear systems[J]. Neurocomputing, 2014, 136(1):170-179.
|
[18] |
ZHENG P S, DIMITRAKAKIS C, TRIESCH J. Network self-organization explains the statistics and dynamics of synaptic connection strengths in cortex[J]. Computational Biology, 2013, 9(1):1-8.
|
[19] |
LEUNG C S, LAM P M. A local training-pruning approach for recurrent neural networks[J]. International Journal of Neural Systems, 2003, 13(1):25-38.
|
[20] |
乔俊飞, 韩红桂. RBF神经网络的结构动态优化设计[J]. 自动化学报, 2010, 36(6):865-872. QIAO J F, HAN H G. Optimal structure design for RBFNN structure[J]. Acta Automatica Sinica, 2010, 36(6):865-872.
|
[21] |
TOK D K, YU D L, MATHEWS C. Adaptive structure radial basis function network model for processes with operating region migration[J]. Neurocomputing, 2015, 155:186-193.
|
[22] |
GOMM J B, YU D L. Selecting radial basis function network centers with recursive orthogonal least squares training[J]. IEEE Transactions on Neural networks, 2000, 11(2):306-314.
|
[23] |
BROOMHEAD D S, LOWE D. Multivariable functional interpolation and adaptive networks[J]. Complex Systems, 1988, 2:321-355.
|
[24] |
KAMINSKI W, STRUMILLO P. Kernel orthonomalization in radial basis function neural networks[J]. IEEE Transactions on Neural Networks, 1997, 8(5):1177-1183.
|
[25] |
AKAIKE H. Fitting autoregressive models for prediction[J]. Annals of the Institute of Statistical Mathematics, 1969, 21:425-439.
|
[26] |
TEOH E J, TAN K C, XIANG C. Estimating the number of hidden neurons in a feedforward network using the singular value decomposition[J]. IEEE Transactions on Neural Networks, 2006, 17(6):1623-1629.
|
[27] |
KONSTANTINIDES K, YAO K. Statistical analysis of effective singular values in matrix rank determination[J]. IEEE Transactions on Acoustics, Speech Signal Process, 1988, 36(5):757-763.
|
[28] |
HAN H G, CHEN Q L, QIAO J F. An efficient self-organizing RBF neural network for water quality prediction[J]. Neural Networks, 2011, 24(7):717-725.
|
[29] |
韩红桂, 乔俊飞, 薄迎春. 基于信息强度的RBF神经网络结构设计研究[J]. 自动化学报, 2012, 38(7):1083-1090. HAN H G, QIAO J F, BO Y C. On structure design for RBF neural network based on information strength[J]. Acta Automatica Sinica, 2012, 38(7):1083-1090.
|
[30] |
乔俊飞, 安茹, 韩红桂. 基于RBF神经网络的出水氨氮预测研究[C]//杨辉. 第26届中国过程控制会议. 南昌:中国自动化学会, 2015:120-127. QIAO J F, AN R, HAN H G. Based on the RBF neural network water ammonia nitrogen prediction research[C]//YANG H. The 26th Process Control Meeting in China. Nanchang:China Society of Automation, 2015:120-127.
|
[31] |
杨琴, 谢淑云. BP神经网络在洞庭湖氨氮浓度预测中的应用[J]. 水资源与水工程学报, 2006, 17(1):65-67. YANG Q, XIE S Y. Application of BP neural network into predicting NH3-N concentration of Dongting Lake[J]. Journal of Water Resources & Water Engineering, 2006, 17(1):65-70.
|