[1] |
张志成. 高超声速气动热和热防护[M]. 北京:国防工业出版社, 2003:222-317. ZHANG Z C. Hypersonic Aerodynamic Heat and Thermal Protection[M]. Beijing:National Defense Industry Press, 2003:222-317.
|
[2] |
张涛. 热解气体流动的二维烧蚀热防护数值仿真研究[J]. 宇航学报, 2014, 35(1):119-124. ZHANG T. Numerical simulation research on two-dimensional ablative thermal protection with pyrolysis gas flow[J]. Journal of Astronautics, 2014, 35(1):119-124.
|
[3] |
刘骁, 国义军, 刘伟, 等. 碳化材料三维烧蚀热响应有限元计算研究[J]. 宇航学报, 2016, 37(9):1150-1156. LIU X, GUO Y J, LIU W, et al. Numerical simulation research on three-dimensional ablative thermal response of charring ablators[J]. Journal of Astronautics, 2016, 37(9):1150-1156.
|
[4] |
BAHRAMIAN A R, KOKABI M, FAMILI M H N, et al. Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin:process modeling and experimental[J]. Polymer, 2006, 47(10):3661-3673.
|
[5] |
HAKKAKI F A, KOWSARY F. Heat flux estimation in a charring ablator[J]. Numerical Heat Transfer, Part A:Applications, 2007, 53(5):543-560.
|
[6] |
XU Y H, HU X, YANG Y X, et al. Dynamic simulation of insulation material ablation process in solid propellant rocket motor[J]. Journal of Aerospace Engineering, 2014, 28(5):04014118.
|
[7] |
ALBA C R, GREENDYKE R B. Nonequilibrium finite-rate carbon ablation model for earth reentry flows[J]. Journal of Spacecraft and Rockets, 2016, 53(3):579-583.
|
[8] |
LI W J, HUANG H M, TIAN Y, et al. A nonlinear pyrolysis layer model for analyzing thermal behavior of charring ablator[J]. International Journal of Thermal Sciences, 2015, 98:104-112.
|
[9] |
LI W J, HUANG H M, TIAN Y, et al. Nonlinear analysis on thermal behavior of charring materials with surface ablation[J]. International Journal of Heat and Mass Transfer, 2015, 84:245-252.
|
[10] |
HUANG H M, LI W J, YU H L. Thermal analysis of charring materials based on pyrolysis interface model[J]. Thermal Science, 2014, 18(5):1591-1596.
|
[11] |
LI W J, HUANG H M, AI B C, et al. On the novel designs of charring composites for thermal protection application in reentry vehicles[J]. Applied Thermal Engineering, 2016, 93:849-855.
|
[12] |
GORI F, CORASANITI S, WOREK W M, et al. Theoretical prediction of thermal conductivity for thermal protection systems[J]. Applied Thermal Engineering, 2012, 49:124-130.
|
[13] |
EWING M E, LAKER T S, WALKER D T. Numerical modeling of ablation heat transfer[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(4):615-632.
|
[14] |
LACHAUD J, MAGIN T E, COZMUTA I, et al. A short review of ablative-material response models and simulation tools[C]//7th Aerothermodynamics Symposium. Belgium:European Space Agency, 2011.
|
[15] |
WENG H Y, MARTIN A. Numerical investigation of thermal response using orthotropic charring ablative material[J]. Journal of Thermophysics and Heat Transfer, 2015, 29(3):429-438
|
[16] |
AMAR A J. Modeling of One-dimensional Ablation with Porous Flow Using Finite Control Volume Procedure[M]. Raleigh:North Carolina State University, 2006:12-134.
|
[17] |
WENG H Y, MARTIN A. Multidimensional modeling of pyrolysis gas transport inside charring ablative materials[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(4):583-597.
|
[18] |
LACHUAD J, VAN EEKELEN T, SCOGGINS J B, et al. Detailed chemical equilibrium model for porous ablative materials[J]. International Journal of Heat and Mass Transfer, 2015, 90:1034-1045.
|
[19] |
LI W J, HUANG H M, YU H L, et al. Effects of gradient density on effective heat capacity of charring ablative material for re-entry vehicles[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2015, 25(3):472-483.
|
[20] |
LI W J, HUANG H M, WANG Q, et al. Protection of pyrolysis gases combustion against charring materials' surface ablation[J]. International Journal of Heat and Mass Transfer, 2016, 102:10-17.
|
[21] |
CHEN Y K, MILOS F S. Effects of nonequilibrium chemistry and Darcy-Forchheimer pyrolysis flow for charring ablator[J]. Journal of Spacecraft and Rockets, 2013, 50(2):256-269
|
[22] |
GHORBANI Z, WEBSTER R, LAZARO M, et al. Critical evaluation of parameter estimation techniques for pyrolysis of charring materials[C]//8th US National Combustion Meeting. Utah:Western States Section of the Combustion Institute, 2013.
|
[23] |
CHEN Y K, SQUIRE T, LAUB B, et al. Monte Carlo analysis for spacecraft thermal protection system design[C]//9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. San Francisco, 2006.
|
[24] |
CHEN Y K, MILOS F S, GOKEEN T. Validation of a three-dimensional ablation and thermal response simulation code[C]//10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Chicago, 2010.
|
[25] |
刘军. 科学计算中的蒙特卡罗策略[M]. 北京:高等教育出版社, 2009:17-38. LIU J. Monte Carlo Strategies in Scientific Computing[M]. Beijing:Higher Education Press, 2009:17-38.
|
[26] |
CHENG W L, LIU N, LI Z, et al. Application study of a correction method for a spacecraft thermal model with a Monte Carlo hybrid algorithm[J]. Chinese Science Bulletin, 2011, 56(13):1407-1412.
|
[27] |
BLACKWELL B F. Numerical prediction of one-dimensional ablation using a finite control volume procedure with exponential differencing[J]. Numerical Heat Transfer, Part A:Applications, 1988, 14(1):17-34.
|
[28] |
AMAR A J, BLACKWELL B F, EDWARDS J R. One-dimensional ablation using a full Newton's method and finite control volume procedure[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(1):71-82.
|
[29] |
AMAR A J, BLACKWELL B F, EDWARDS J R. Development and verification of a one-dimensional ablation code including pyrolysis gas flow[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(1):59-71.
|
[30] |
LACHAUD J, MARTIN A, COZMUTA I, et al. Ablation Workshop Test Case[EB/OL]. 2011
|
|
[2017] . http://ablation 2012. engineering. uky.edu/files/2012/02/Test_Case_1. pdf.
|
[31] |
于翘. 材料工艺. 下[M]. 北京:中国宇航出版社, 1989:10-192. YU Q. Material Technology, Part B[M]. Beijing:China Astronautic Publishing House, 1989:10-192.
|