[1] |
CHEN H J, GOSWAMI D Y, STEFANAKOS E K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat[J]. Renewable & Sustainable Energy Reviews, 2010, 14(9):3059-3067.
|
[2] |
TCHANCHE B F, LAMBRINOS G, FRANGOUDAKIS A, et al. Low-grade heat conversation into power using organic Rankine cycles-a review of various applications[J]. Renewable & Sustainable Energy Reviews, 2011, 15(8):3963-3979.
|
[3] |
FRANCO A, VACCARO M. Numerical simulation of geothermal reservoirs for the sustainable design of energy plants:a review[J]. Renewable & Sustainable Energy Reviews, 2014, 30:987-1002.
|
[4] |
BINA S M, JALILINASRABADY S, FUJⅡ H. Thermo-economic evaluation of various bottoming ORSs for geothermal power plant, determination of optimum cycle for Sabalan power plant exhaust[J]. Gsothermics, 2017, 70:181-191.
|
[5] |
BACCIOLI A, ANTONELLI M, DESIDERI U. Dynamic modeling of a solar ORC with compound parabolic collectors:annual production and comparison with steady-state simulation[J]. Energy Conversion & Management, 2017, 148:708-723.
|
[6] |
PATIL V R, BIRADAR V I, SHREYAS R, et al. Techno-economic comparison of solar organic Rankine cycle (ORC) and photovoltaic (PV) systems with energy storage[J]. Renewable Energy, 2017, 113:1250-1260.
|
[7] |
WANG J L, ZHAO L, WANG X D. A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle[J]. Applied Energy, 2010, 87(11):3366-3373
|
[8] |
LIN D, ZHU Q, LI X. Thermodynamic comparative analyses between (organic) Rankine cycle and Kalina cycle[J]. Energy Procedia, 2015, 75:1618-1623.
|
[9] |
WANG Y, TANG Q, WANG M, et al. Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery[J]. Energy Conversion & Management, 2017:482-492.
|
[10] |
WANG X D, DUAN Y Y, YAN W M. Novel serpentine-baffle flow field design for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2007, 173(1):210-221.
|
[11] |
ZHU J L, HU K Y, LU X L, et al. A review of geothermal energy resources, development, and applications in China:current status and prospects[J]. Energy, 2015, 93:466-483.
|
[12] |
DRESCHER U, BRÜGGEMANN D. Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants[J]. Applied Thermal Engineering, 2007, 27(1):223-228.
|
[13] |
HETTIARACHCHI H D M, GOLUBOVIC M, WOREK W M, et al. Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources[J]. Energy, 2007, 32(9):1698-1706.
|
[14] |
ABADI G B, KIM K C. Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid:advantages and issues[J]. Renewable & Sustainable Energy Reviews, 2017, 73:1000-1013.
|
[15] |
CHYS M, BROEK M V D, VANSLAMBROUCK B, et al. Potential of zeotropic mixtures as working fluids in organic Rankine cycles[J]. Energy, 2012, 44(1):623-632.
|
[16] |
LUO X L, LIANG Z H, GUO G Q, et al. Thermo-economic analysis and optimization of a zoetropic fluid organic Rankine cycle with liquid-vapor separation during condensation[J]. Energy Conversion & Management, 2017, 148:517-532.
|
[17] |
LIU Q, SHEN A, DUAN Y. Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids[J]. Applied Energy, 2015, 148:410-420.
|
[18] |
HEBERLE F, BRÜGGEMANN D, SCIUBBA E. Thermo-economic evaluation of organic rankine cycles for geothermal power generation using zeotropic mixtures[J]. Energies, 2015, 8(3):2097-2124.
|
[19] |
CHEN X, CHEN Y, DENG L, et al. Experimental verification of a condenser with liquid-vapor separation in an air conditioning system[J]. Applied Thermal Engineering, 2013, 51(1/2):48-54.
|
[20] |
LUO X L, YI Z T, ZHANG B J, et al. Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle[J]. Applied Energy, 2015, 185(2):1309-1323.
|
[21] |
LUO X L, YI Z T, CHEN Z, et al. Performance comparison of the liquid-vapor separation, parallel flow, and serpentine condensers in the organic Rankine cycle[J]. Applied Thermal Engineering, 2016, 94(6718):435-448.
|
[22] |
LI J, LIU Q, DUAN Y, et al. Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation[J]. Applied Energy, 2017, 190:376-389.
|
[23] |
SADEGHI M, NEMATI A, GHAVIMI A, et al. Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures[J]. Energy, 2016, 109:791-802.
|
[24] |
梁志辉, 罗向龙, 陈颖, 等. 气液分离双压有机朗肯循环系统的热力学分析及优化[J]. 热能动力工程, 2016, 31(4):24-30. LIANG Z H, LUO X L, CHEN Y, et al. Thermodynamic analysis and optimization of double pressure organic Rankine cycle system with vapor-liquid separation[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(4):24-30.
|
[25] |
LEE J, LEE K. Friction and Colburn factor correlations and shape optimization of chevron-type plate heat exchangers[J]. Applied Thermal Engineering, 2015, 89:62-69.
|
[26] |
LONGO G A, RIGHETTI G, ZILIO C. A new computational procedure for refrigerant condensation inside herringbone-type brazed plate heat exchangers[J]. International Journal of Heat & Mass Transfer, 2015, 82:530-536.
|
[27] |
AMALFI R L, VAKILI-FARAHANI F, THOME J R. Flow boiling and frictional pressure gradients in plate heat exchangers(Ⅱ):Comparison of literature methods to database and new prediction methods[J]. International Journal of Refrigeration, 2016, 61:185-203.
|
[28] |
WANG L K, SUNDEN B, YANG Q S. Pressure drop analysis of steam condensation in a plate heat exchanger[J]. Heat Transfer Engineering, 1999, 20(1):71-77.
|
[29] |
WANG J, YAN Z, WANG M, et al. Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm[J]. Energy Conversion & Management, 2013, 71(3):146-158.
|
[30] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
|
[31] |
LIU Q, DUAN Y, YANG Z. Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids[J]. Applied Energy, 2014, 115(4):394-404.
|