[1] |
KESHAV P, HAAS B D, CLERMONT B, et al. Optimisation of the secondary ball mill using an on-line ball and pulp load sensor-the Sensomag[J]. Minerals Engineering, 2011, 24(3):325-334.
|
[2] |
汤健. 基于频谱数据驱动的旋转机械设备负荷软测量[M]. 北京:国防工业出版社, 2015. TANG J. Soft Sensing of Rotating Machinery Equipment Load based on Spectrum Data Drive[M]. Beijing:National Defense Industry Press, 2015.
|
[3] |
柴天佑. 复杂工业过程运行优化与反馈控制[J]. 自动化学报, 2013, 39(11):1744-1757. CHAI T Y. Operational optimization and feedback control for complex industrial processes[J]. Acta Automatica Sinica, 2013, 39(11):1744-1757.
|
[4] |
ZHOU P, CHAI T Y, WANG H. Intelligent optimal-setting control for grinding circuits of mineral processing process[J]. IEEE Transactions on Automation Science & Engineering, 2009, 6(4):730-743.
|
[5] |
汤健, 柴天佑, 丛秋梅, 等. 选择性融合多尺度筒体振动频谱的磨机负荷参数建模[J]. 控制理论与应用, 2015, 32(12):1582-1591. TANG J, CHAI T Y, CONG Q M, et al. Modeling mill load parameters based on selective fusion of multi-scale shell vibration frequency spectra[J]. Control Theory & Applications, 2015, 32(12):1582-1591.
|
[6] |
汤健, 赵立杰, 岳恒, 等. 湿式球磨机筒体振动信号分析及负荷软测量[J]. 东北大学学报(自然科学版), 2010, 31(11):1521-1524. TANG J, ZHAO L J, YUE H, et al. Analysis of vibration signal of wet ball mill shell and soft sensoring for mill load[J]. Journal of Northeastern University(Natural Science), 2010, 31(11):1521-1524.
|
[7] |
TANG J, WANG D H, CHAI T Y. Predicting mill load using partial least squares and extreme learning machines[J]. Soft Computing, 2012, 16(9):1585-1594.
|
[8] |
JIN H P, CHEN X G, WANG L, et al. Dual learning-based online ensemble regression approach for adaptive soft sensor modeling of nonlinear time-varying processes[J]. Chemometrics & Intelligent Laboratory Systems, 2016, 151:228-244.
|
[9] |
王通, 高宪文, 刘文芳. 基于改进即时学习算法的动液面软测量建模[J]. 东北大学学报(自然科学版), 2015, 36(7):918-922. WANG T, GAO X W, LIU W F. Soft sensor for determination of dynamic fluid levels based on enhanced just-in-time learning algorithm[J]. Journal of Northeastern University(Natural Science), 2015, 36(7):918-922.
|
[10] |
李元, 张新民. 基于非高斯信息的JITL软测量模型[J]. 上海交通大学学报, 2015, 49(6):897-901. LI Y, ZHANG X M. Non-Gaussian information based JITL soft sensor model[J]. Journal of Shanghai Jiaotong University, 2015, 49(6):897-901.
|
[11] |
牛大鹏, 刘元清. 基于改进即时学习算法的湿法冶金浸出过程建模[J]. 化工学报, 2017, 68(7):2873-2879. NIU D P, LIU Y Q. Modeling hydrometallurgical leaching process based on improved just-in-time learning algorithm[J]. CIESC Jorunal, 2017, 68(7):2873-2879.
|
[12] |
汤健, 柴天佑, 刘卓, 等. 基于更新样本智能识别算法的自适应集成建模[J]. 自动化学报, 2016, 42(7):1040-1052. TANG J, CHAI T Y, LIU Z, et al. Adaptive ensemble modelling approach based on updating sample intelligent identiflcation[J]. Acta Automatica Sinica, 2016, 42(7):1040-1052.
|
[13] |
SHAO W M, TIAN X M. Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models[J]. Chemical Engineering Research & Design, 2015, 95:113-132.
|
[14] |
YANG K, JIN H, CHEN X G, et al. Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models[J]. Chemometrics & Intelligent Laboratory Systems, 2016, 155:170-182.
|
[15] |
SHAO W M, TIAN X M. Semi-supervised selective ensemble learning based on distance to model for nonlinear soft sensor development[J]. Neurocomputing, 2017, 22:91-104.
|
[16] |
刘佳, 邵诚, 朱理. 基于迁移学习工况划分的裂解炉收率PSO-LS-SVM建模[J]. 化工学报, 2016, 67(5):1982-1988. LIU J, SHAO C, ZHU L. Modeling of cracking furnace yields with PSO-LS-SVM based on operating condition classification by transfer learning[J]. CIESC Jorunal, 2016, 67(5):1982-1988.
|
[17] |
GRUBINGER T, CHASPARIS G, NATSCHLAEGER T. Generalized online transfer learning forclimate control in residential buildings[J]. Energy and Buildings. 2017, 139:63-71.
|
[18] |
YAN K, ZHANG D. Calibration transfer and drift compensation of e-noses viacoupled task learning[J]. Sensors and Actuators B:Chemical, 2016, 225:288-297.
|
[19] |
PARDOE D, STONE P. Boosting for regression transfer[C]//Proceedings of the Twenty-Seventh International Conference on Machine Learning (ICML 10), Haifa, Israel, 2010:863-870.
|
[20] |
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2):199-210.
|
[21] |
KAN M N, WU J T, SHAN S G, et al. Domain adaptation for face recognition:targetize source domain bridged by common subspace[J]. International Journal of Computer Vision, 2014, 109(1):94-109.
|
[22] |
LONG M S, WANG J M, DING G G, et al. Transfer learning with graph co-regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7):1805-1818.
|
[23] |
LONG M S, WANG J M, DING G G, et al. Transfer learning with graph co-regularization[C]//Proceedings of the 26th AAAI Conference on Artificial Intelligence, 2012.
|
[24] |
LONG M S, WANG J M, DING G G, et al. Adaptation regularization:a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5):1076-1089.
|
[25] |
LONG M S, WANG J M, DING G G, et al. Transfer feature learning with joint distribution adaptation[C]//IEEE International Conference on Computer Vision, 2013.
|
[26] |
WANG X Z, SCHNEIDER J. Flexible transfer learning under support and model shift[C]//Advances in Neural Information Processing Systems 27(NIPS 2014), Curran Associates, Inc. 2014:1898-1906.
|
[27] |
SCHÖLKOPF B, PLATT J, HOFMANN T. A kernel method for the two-sample problem[C]//Proceedings of NIPS, 2006.
|
[28] |
SUN Q, CHATTOPADHYAY R, PANCHANATHAN S, et al. A two-stage weighting framework for multi-source domain adaptation[C]//International Conference on Neural Information Processing Systems. Curran Associates Inc. 2011:505-513.
|
[29] |
TOMAR V S, ROSE R C. Manifold regularized deep neural networks[C]//Proceedings of the 2014 Annual Conference of the International Speech Communication Association. Singapore:ISCA, 2014:348-352.
|
[30] |
GUAN N, TAO D, LUO Z, et al. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent[J]. IEEE Transactions on Image Processing, 2011, 20(7):2030.
|