CIESC Journal ›› 2018, Vol. 69 ›› Issue (2): 546-554.DOI: 10.11949/j.issn.0438-1157.20171384
Previous Articles Next Articles
CHENG Shao'an, HUANG Zhipeng, YU Liliang, MAO Zhengzhong, HUANG Haobing, SUN Yi
Received:
2017-10-17
Revised:
2017-11-11
Online:
2018-02-05
Published:
2018-02-05
Supported by:
supported by the National Key Research and Development Plan (2016YFB0600505) and the National Natural Science Foundation of China (51278448, 51478414).
成少安, 黄志鹏, 于利亮, 毛政中, 黄浩斌, 孙怡
通讯作者:
成少安
基金资助:
国家重点研发计划项目(2016YFB0600505);国家自然科学基金项目(51278448,51478414)。
CLC Number:
CHENG Shao'an, HUANG Zhipeng, YU Liliang, MAO Zhengzhong, HUANG Haobing, SUN Yi. Research progress of microbial fuel cell for treating high salinity wastewater[J]. CIESC Journal, 2018, 69(2): 546-554.
成少安, 黄志鹏, 于利亮, 毛政中, 黄浩斌, 孙怡. 微生物燃料电池处理高盐废水的研究进展[J]. 化工学报, 2018, 69(2): 546-554.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171384
[1] | DALMACIJA B, KARLOVIC E, TAMAS Z, et al. Purification of high-salinity wastewater by activated sludge process[J]. Water Research, 1996, 30(2):295-298. |
[2] | SHI X, LEFEBVRE O, NG K K, et al. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity[J]. Bioresource Technology, 2014, 153(2):79-86. |
[3] | ZHOU G, WANG Z, LI W, et al. Graphene-oxide modified polyvinyl-alcohol as microbial carrier to improve high salt wastewater treatment[J]. Materials Letters, 2015, 156:205-208. |
[4] | DAN N P, VISVANATHAN C, BASU B. Comparative evaluation of yeast and bacterial treatment of high salinity wastewater based on biokinetic coefficients[J]. Bioresource Technology, 2003, 87(1):51-56. |
[5] | REID E, LIU X, JUDD S J. Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor[J]. Journal of Membrane Science, 2006, 283(1):164-171. |
[6] | WU Y, TAM N F, WONG M H. Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms[J]. Marine Pollution Bulletin, 2008, 56(7):727-734. |
[7] | QIN L, LIU Q, MENG Q, et al. Anoxic oscillating MBR for photosynthetic bacteria harvesting and high salinity wastewater treatment[J]. Bioresource Technology, 2017, 224:69-77. |
[8] | NITISORAVUT R, REGMI R. Plant microbial fuel cells:a promising biosystems engineering[J]. Renewable & Sustainable Energy Reviews, 2017, 76:81-89. |
[9] | TRAPERO J R, HORCAJADA L, LINARES J J, et al. Is microbial fuel cell technology ready? An economic answer towards industrial commercialization[J]. Applied Energy, 2017, 185:698-707. |
[10] | LIU H, LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology, 2004, 38(14):4040-4046. |
[11] | MIN B, LOGAN B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environmental Science & Technology, 2004, 38(21):5809-5814. |
[12] | 罗勇, 骆海萍, 覃邦余, 等. 盐度对MFC产电及其微生物群落的影响[J]. 中国环境科学, 2013, 33(5):832-837. LUO Y, LUO H P, QIN B Y, et al. Effects of salinity on power generation and the microbial community structure in the microbial fuel cells[J]. China Environmental Science, 2013, 33(5):832-837. |
[13] | 李凤娟, 徐菲, 李小龙, 等. 高盐度废水处理技术研究进展[J]. 环境科学与管理, 2014, 39(2):72-75. LI F J, XU F, LI X L, et al. Research on treatment of high salinity wastewater[J]. Environmental Science and Management, 2014, 39(2):72-75. |
[14] | 李玲玲. 高盐度废水生物处理特性研究[D]. 青岛:中国海洋大学, 2006. LI L L. Study of biological treatment of high-salinity wastewater[D]. Qingdao:Ocean University of China, 2006. |
[15] | 文湘华, 占新民, 王建龙, 等. 含盐废水的生物处理研究进展[J]. 环境科学, 1999, 20(3):104-106. WEN X H, ZHAN X M, WANG J L, et al. Review of the biological treatment of salinity wastewater[J]. Environmental Science, 1999, 20(3):104-106. |
[16] | 安立超, 严学亿, 胡磊, 等. 嗜盐菌的特性与高盐废水生物处理的进展[J]. 环境污染与防治, 2002, 24(5):293-296. AN L C, YAN X Y, HU L, et al. Review of characteristic of halophilic and biological treatment of hapersaline wastewater[J]. Environmental Pollution & Control, 2002, 24(5):293-296. |
[17] | 尤作亮, 蒋展鹏, 祝万鹏, 等. 海水直接利用及其环境问题分析[J]. 给水排水, 1998, 24(3):64-67. YOU Z L, JIANG Z P, ZHU W P, et al. Analysis of seawater direct utilization and its environmental problems[J]. Journal of Water Supply and Sewerage, 1998, 24(3):64-67. |
[18] | 邹高龙. 盐度变化对含氨氮废水处理的影响[D]. 长沙:湖南大学, 2008. ZOU G L. Effect of salinity variation on the treatment wastewater containing ammonia[D]. Changsha:Hunan University, 2008. |
[19] | LEFEBVRE O, HABOUZIT F, BRU V, et al. Treatment of hypersaline industrial wastewater by a microbial consortium in a sequencing batch reactor[J]. Environmental Technology, 2004, 25(5):543-554. |
[20] | LEFEBVRE O, MOLETTA R. Treatment of organic pollution in industrial saline wastewater:a literature review[J]. Water Research, 2006, 40(20):3671-3682. |
[21] | LIN S H, SHYU C T, SUN M C. Saline wastewater treatment by electrochemical method[J]. Water Research, 1998, 32(4):1059-1066. |
[22] | MA J Y, MA Z Y, YAN J H, et al. Development of an evaporation crystallizer for desalination of alkaline organic wastewater before incineration[J]. Journal of Zhejiang University Science A, 2005, 6(10):1100-1106. |
[23] | 钟璟, 韩光鲁, 陈群. 高盐有机废水处理技术研究新进展[J]. 化工进展, 2012, 31(4):920-926. ZHONG J, HAN G L, CHEN Q. Recent developments in treatment technology for highly saline organic wastewater[J]. Chemical Industry and Engineering Progress, 2012, 31(4):920-926. |
[24] | 李柄缘, 刘光全, 王莹, 等. 高盐废水的形成及其处理技术进展[J]. 化工进展, 2014, 33(2):493-497. LI B Y, LIU G Q, WANG Y, et al. Formation and treatment of high-salt wastewater[J]. Chemical Industry and Engineering Progress, 2014, 33(2):493-497. |
[25] | 吴雅琴, 杨波, 申屠勋玉, 等. 膜集成技术在高含盐废水资源化中的应用[J]. 水处理技术, 2016, 42(7):118-120. WU Y Q, YANG B, SHENTU X Y, et al. Application of membrane combined process in high saline wastewater recycling[J]. Technology of Water Treatment, 2016, 42(7):118-120. |
[26] | 杨运, 吴吉春, 唐甜. 深井地下灌注数值模型SWIFT[J]. 高校地质学报, 2010, 16(1):45-52. YANG Y, WU J C, TANG T. SWIFT:numerical model for deep-well injection[J]. Geological Journal of China Universities, 2010, 16(1):45-52. |
[27] | 王晓华, 于景琦, 陈宏坤, 等. 美国工业废液地下灌注与控制技术介绍[J]. 油气田环境保护, 2007, 17(3):41-44. WANG X H, YU J Q, CHEN H K, et al. Underground injection and control of industry waste liquid in USA[J]. Environmental Protection of Oil & Gas Fields, 2007, 17(3):41-44. |
[28] | INGRAM M. The influence of sodium chloride and temperature on the endogenous respiration of B. cereus[J]. Journal of General Physiology, 1940, 23(6):773-780. |
[29] | TOKUZ R Y, ECKENFELDER W W JR. The effect of inorganic salts on the activated sludge process performance[J]. Water Research, 1979, 13(1):99-104. |
[30] | KARGI F, UYGUR A. Biological treatment of saline wastewater in an aerated percolator unit utilizing halophilic bacteria[J]. Environmental Technology, 1996, 17(3):325-330. |
[31] | IMAI A, ONUMA K, INAMORI Y, et al. Biodegradation and adsorption in refractory leachate treatment by the biological activated carbon fluidized bed process[J]. Water Research, 1995, 29(2):687-694. |
[32] | MOHAMED A M O, MARAQA M, HANDHALY J A. Impact of land disposal of reject brine from desalination plants on soil and groundwater[J]. Desalination, 2005, 182(1):411-433. |
[33] | 高彦林, 张雁秋, 薛方亮. 铁碳微电解法处理某化工厂废水的研究[J]. 江苏环境科技, 2006, 19(5):11-13. GAO Y L, ZHANG Y Q, XUE F L. Treatment of chemical wastewater by ferric-carbon micro-electrolysis method[J]. Jiangsu Environmental Science and Technology, 2006, 19(5):11-13. |
[34] | 王宏, 郑一新, 钱彪, 等. 电解凝絮法处理高盐度有机废水的实验研究[J]. 环境科学研究, 2001, 14(2):51-53. WANG H, ZHENG Y X, QIAN B, et al. The treatment of high-salinity organic wastewater by electrocoagulation[J]. Research of Environmental Sciences, 2001, 14(2):51-53. |
[35] | 王伟, 刘俊杰, 张桂风. 焚烧法处理高浓度有机、含盐废水的研究分析[J]. 黑龙江环境通报, 2008, 32(3):70-71. WANG W, LIU J J, ZHANG G F. Research and analysis of treatment of high concentration and high salt wastewater with burning method[J]. Heilongjiang Environmental Journal, 2008, 32(3):70-71. |
[36] | 孔峰, 张晓叶, 程洁红. 蒸发浓缩-焚烧法处理高浓度医药中间体废液方案设计[J]. 环境工程, 2010, 28(4):37-38. KONG F, ZHANG X Y, CHENG J H. Conceptual design of treatment of medical waste water with high organics by evaporation and concentration-incineration[J]. Journal of Environmental Engineering, 2010, 28(4):37-38. |
[37] | KIM D H. A review of desalting process techniques and economic analysis of the recovery of salts from retentates[J]. Desalination, 2011, 270(1):1-8. |
[38] | SCHOFIELD R W, FANE A G, FELL C J D, et al. Factors affecting flux in membrane distillation[J]. Desalination, 1990, 77(90):279-294. |
[39] | KINCANNON D F, GAUDY A F. Some effects of high salt concentrations on activated sludge[J]. Journal of the Water Pollution Control Federation, 1966, 38(7):1148-1159. |
[40] | KINCANNON D F, GAUDY A F. Response of biological waste treatment systems to changes in salt concentrations[J]. Biotechnology & Bioengineering, 1968, 10(4):483-496. |
[41] | REID E, LIU X, JUDD S J. Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor[J]. Journal of Membrane Science, 2006, 283(1/2):164-171. |
[42] | 吴晶. 多效蒸发处理高盐废水及其化工模拟过程[D]. 上海:华东理工大学, 2012. WU J. Multi-effect evaporation to treat high salt water and the simulation process of it[D]. Shanghai:East China University of Science and Technology, 2012. |
[43] | 蒋勇, 阜葳, 毛联华, 等. 城市污水处理厂运行能耗影响因素分析[J]. 北京交通大学学报, 2014, 38(1):33-37. JIANG Y, FU W, MAO L H, et al. Influence factors analysis of urban sewage treatment plant on energy consumption[J]. Journal of Beijing Jiaotong University, 2014, 38(1):33-37. |
[44] | 高旭, 龙腾锐, 郭劲松. 城市污水处理能耗能效研究进展[J]. 重庆大学学报(自然科学版), 2002, 25(6):143-148. GAO X, LONG T R, GUO J S. Research progress of energy efficiency of municipal wastewater treatment[J]. Journal of Chongqing University (Natural Science Edition), 2002, 25(6):143-148. |
[45] | 赵正权, 徐冬, 张浩, 等. 中国污水处理电耗分析和节能途径[J]. 科技导报, 2010, 28(22):43-47. ZHAO Z Q, XU D, ZHANG H, et al. Power consumption of wastewater treatment and the measures of energy saving[J]. Science & Technology Review, 2010, 28(22):43-47. |
[46] | LOGAN B E, REGAN J M. Microbial fuel cells-challenges and applications[J]. Environmental Science & Technology, 2006, 40(17):5172-5180. |
[47] | LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells:methodology and technology[J]. Environmental Science & Technology, 2006, 40(17):5181-5192. |
[48] | LIU H, CHENG S, LOGAN B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[J]. Environmental Science & Technology, 2005, 39(2):658-662. |
[49] | LOGAN B E, MURANO C, SCOTT K, et al. Electricity generation from cysteine in a microbial fuel cell[J]. Water Research, 2005, 39(5):942-952. |
[50] | 刘伟凤. 微生物燃料电池碳基电极的界面调控与电化学性能强化[D]. 杭州:浙江大学, 2016. LIU W F. Regulation of electrode interface for enhancing the electrochemical properties of carbon-based electrodes in microbial fuel cells[D]. Hangzhou:Zhejiang University, 2016. |
[51] | 陈杰. 针对微生物燃料电池扩大化的新型空气阴极开发研究[D]. 杭州:浙江大学, 2017. CHEN J. Research and development of novel cathode for the scaling-up of microbial fuel cell[D]. Hangzhou:Zhejiang University, 2017. |
[52] | CHOI C, HU N, LIM B. Cadmium recovery by coupling double microbial fuel cells[J]. Bioresource Technology, 2014, 170(5):361-369. |
[53] | DUTEANU N M, GHANGREKAR M M, ERABLE B, et al. Microbial fuel cells-an option for wastewater treatment[J]. Environmental Engineering & Management Journal, 2010, 9(8):1069-1087. |
[54] | DU Z, LI H, GU T. A state of the art review on microbial fuel cell:a promising technology for power generation and wastewater treatment[J]. Biotechnology Advances, 2007, 5(25):464-482. |
[55] | HARNISCH F, SCHRODER U. From MFC to MXC:chemical and biological cathodes and their potential for microbial bioelectrochemical systems[J]. Chemical Society Reviews, 2010, 39(11):4433-4448. |
[56] | RABAEY K, LISSENS G, SICILIANO S D, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency[J]. Biotechnology Letters, 2003, 25(18):1531-1535. |
[57] | GUI G C, CHANG I S, KIM B H, et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors & Bioelectronics, 2003, 18(4):327-34. |
[58] | RABAEY K, LISSENS G, SICILIANO S D, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency[J]. Biotechnology Letters, 2003, 25(18):1531-1535. |
[59] | HE L, DU P, CHEN Y, et al. Advances in microbial fuel cells for wastewater treatment[J]. Renewable & Sustainable Energy Reviews, 2017, 71:388-403. |
[60] | VIRDIS B, RABAEY K, ROZENDAL R A, et al. Simultaneous nitrification and denitrification (SND) at a microbial fuel cell (MFC) biocathode[J]. Journal of Biotechnology, 2010, 150(1):153-154. |
[61] | ZHANG J, ZHENG P, ZHANG M, et al. Kinetics of substrate degradation and electricity generation in anodic denitrification microbial fuel cell (AD-MFC)[J]. Bioresource Technology, 2013, 149(4):44-50. |
[62] | MAYERS J J, FLYNN K J, SHIELDS R J. Influence of the N:P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition of Nannochloropsis sp[J]. Bioresource Technology, 2014, 169(5):588-595. |
[63] | HAPPE M, SUGNAUX M, CACHELIN C P, et al. Scale-up of phosphate remobilization from sewage sludge in a microbial fuel cell[J]. Bioresource Technology, 2016, 200:435-443. |
[64] | YUAN S J, SHENG G P, LI W W, et al. Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell[J]. Environmental Science & Technology, 2010, 44(14):5575-5580. |
[65] | LEFEBVRE O, ALMAMUN A, NG H Y. A microbial fuel cell equipped with a biocathode for organic removal and denitrification[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2008, 58(4):881-885. |
[66] | TAO Q, LUO J, ZHOU J, et al. Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell[J]. Bioresource Technology, 2014, 164:402-407. |
[67] | FENG Z, RAHUNEN N, VARCOE J R, et al. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal[J]. Biosensors & Bioelectronics, 2009, 24(7):1931-1936. |
[68] | CHOI C, CUI Y. Recovery of silver from wastewater coupled with power generation using a microbial fuel cell[J]. Bioresource Technology, 2012, 107(2):522-525. |
[69] | HEIJNE A T, LIU F, RV W, et al. Copper recovery combined with electricity production in a microbial fuel cell[J]. Environmental Science & Technology, 2010, 44(11):4376-4381. |
[70] | YOU S J, ZHANG J N, YUAN Y X, et al. Development of microbial fuel cell with anoxic/oxic design for treatment of saline seafood wastewater and biological electricity generation[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(8):1077-1083. |
[71] | 刘明, 金春姬, 孙若晨. 盐度对生物阴极微生物燃料电池脱氮除碳及产电性能的影响[J]. 环保科技, 2015, 21(4):29-34. LIU M, JIN C J, SUN R C. Effects of salinity on carbon and nitrogen removal and electricity generation in a biocathode microbial fuel cell[J]. Journal of Environmental Science and Technology, 2015, 21(4):29-34. |
[72] | WANG X, CHENG S A, ZHANG X Y, et al. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)[J]. International Journal of Hydrogen Energy, 2011, 36(21):13900-13906. |
[73] | LIU H, CHENG S A, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology, 2005, 39(14):5488-5493. |
[74] | MIYAHARA M, KOUZUMA A, WATANABE K. Effects of NaCl concentration on anode microbes in microbial fuel cells[J]. AMB Express, 2015, 5(1):1-9. |
[75] | LEFEBVRE O, TAN Z, KHARKWAL S, et al. Effect of increasing anodic NaCl concentration on microbial fuel cell performance[J]. Bioresource Technology, 2012, 112:336-340. |
[76] | JANNELLI N, NASTRO R A, CIGOLOTTI V, et al. Low pH, high salinity:too much for microbial fuel cells?[J]. Applied Energy, 2017, 192:543-550. |
[77] | KHUDZARI J M, TARTAKOVSKY B, RAGHAVAN G S V. Effect of C/N ratio and salinity on power generation in compost microbial fuel cells[J]. Waste Management, 2016, 48:135-142. |
[78] | AHN Y, LOGAN B E. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells[J]. Bioresource Technology, 2013, 132:436-439. |
[79] | KUSHER D J, KAMERKURA M. Physiology of halophilic eubacteria[J]. Advances in Applied Microbiology, 1986, 10:73-99. |
[80] | WANG J L, ZHANG X M, FENG Y C, et al. Effect of salinity variations on the performance of activated sludge system[J]. Biomedical Environment Sciences, 2005, 18(1):5-8. |
[81] | DINCER A R, KARGI F. Salt inhibition of nitrification and denitrification in saline wastewater[J]. Environmental Technology, 1999, 20(11):1147-1153. |
[82] | ROSA M F, ALBUQUERQUE R T, FERNANDES J M O, et al. Nitrification of saline effluents[J]. Brazilian Journal of Chemical Engineering, 1997, 14(2):151-158. |
[83] | ROSA M F, FURTADO A A L, ALBUQUERQUE R T, et al. Biofilm development and ammonia removal in the nitrification of a saline wastewater[J]. Bioresource Technology, 1998, 65(1):135-138. |
[84] | 郭姿璇, 王群, 佘宗莲. 盐度对未驯化微生物活性的影响[J]. 中国环境科学, 2017, 37(1):181-187. GUO Z X, WANG Q, SHE Z L. Effects of salinity on the activity of non-acclimated biomass[J]. China Environmental Science, 2017, 37(1):181-187. |
[85] | YOSHIE S, OGAWA T, MAKINO H, et al. Characteristics of bacteria showing high denitrification activity in saline wastewater[J]. Letters in Applied Microbiology, 2006, 42(3):277-283. |
[86] | EROGLU V, ALTINBAS M, GOMEC C Y, et al. Problems relating to high silt, salinity and ammonia in Tuzla (Istanbul) Central Wastewater Treatment Plant[C]//Proc. of the 2nd World Eng. Congress, Eng. Innovation and Sustainability:Global Challenges and Issues, Biochemical Environ. Eng. Sarawak, Malaysia, 2002. |
[87] | KUGELMAN I J, MCCARTY P L. Cation toxicity and stimulation in anaerobic waste treatment[J]. Journal of the Water Pollution Control Federation, 1965, 37(1):97-116. |
[88] | DINCER A R, KARGI F. Effects of operating parameters on performances of nitrification and denitrification processes[J]. Bioprocess and Biosystems Engineering, 2000, 23(1):75-80. |
[89] | WINSLOW C E, HAYWOOD E T. The specific potency of certain cations with reference to their effect on bacterial viability[J]. Journal of Bacteriology, 1931, 22(1):49-69. |
[90] | GAUTHIER M J, FLATAU G N, BREITTMAYER V A. Protective effect of glycine betaine on survival of Escherichia-coli-cells in marine environments[J]. Water Science & Technology, 1991, 24(2):129-132. |
[91] | ANAQNOSTOPOULOS G D. Microbial life in extreme environments[J]. Nature, 1979, 279(5714):658. |
[92] | KARGI F. Enhanced biological treatment of saline wastewater by using halophilic bacteria[J]. Biotechnology Letters, 2002, 24(19):1569-1572. |
[93] | ABOU-ELELA S I, KAMEL M M, FAWZY M E. Biological treatment of saline wastewater using a salt-tolerant microorganism[J]. Desalination, 2010, 250(1):1-5. |
[94] | ASPE E, MARTI M C, ROECKEL M. Anaerobic treatment of fishery wastewater using a marine sediment inoculum[J]. Water Research, 1997, 31(9):2147-2160. |
[95] | LEFEBVRE O, VASUDEVAN N, THANASEKARAN K, et al. Microbial diversity in hypersaline wastewater:the example of tanneries[J]. Extremophiles, 2006, 10(6):505-513. |
[96] | CORTES-LORENZO C, SIPKEMA D, RODRIGUZE-DIZA M, et al. Microbial community dynamics in a submerged fixed bed bioreactor during biological treatment of saline urban wastewater[J]. Ecological Engineering, 2014, 71:126-132. |
[97] | 王志霞, 王志岩, 武周虎. 高盐度废水生物处理现状与前景展望[J]. 工业水处理, 2002, 22(11):1-4. WANG Z X, WANG Z Y, WU Z H. Present situation and prospect of the biological treatment of wastewater with high salinity[J]. Industrial Water Treatment, 2002, 22(11):1-4. |
[98] | 何健. 高盐难降解工业废水微生物处理的污泥驯化研究与应用[D]. 南京:南京农业大学, 2000. HE J. Sludge acclimation of microbiological treatment of hypersa1ine refractory waste water[D]. Nanjing:Nanjing Agricultural University, 2000. |
[99] | 何健, 李顺鹏, 崔中利, 等. 含盐工业废水生化处理耐盐污泥驯化及其机制[J]. 中国环境科学, 2002, 22(6):546-550. HE J, LI S P, CUI Z L, et al. Industrial hypersaline wastewater biochemical treatment of salt-tolerant sludge acclimation and its mechanisms[J]. China Environmental Science, 2002, 22(6):546-550. |
[100] | WU G, GUAN Y, ZHAN X. Effect of salinity on the activity, settling and microbial community of activated sludge in sequencing batch reactors treating synthetic saline wastewater[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2008, 58(2):351-358. |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[3] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[4] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[5] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[6] | Chengwei LI, Huayong LUO, Mingxuan ZHANG, Peng LIAO, Qian FANG, Hongwei RONG, Jingyin WANG. Microfludically-generated lanthanum hydroxide cross-linked chitosan microspheres for phosphate removal [J]. CIESC Journal, 2022, 73(9): 3929-3939. |
[7] | Xianlun XU, Yang QIAN, Xingwang ZHANG, Lecheng LEI. Study on treating soil contained pyrene by high voltage pulsed dielectric barrier discharge [J]. CIESC Journal, 2022, 73(9): 4025-4033. |
[8] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[9] | Wenzhang JIN, Yuling ZHANG, Xiaoyu JIA. Study on degradation efficiency of hydroxyethylidene diphosphonic acid by electrochemical advanced oxidation [J]. CIESC Journal, 2022, 73(9): 4062-4069. |
[10] | Zhenhe XU, Hongjiang LI, Yu GAO, Zheng LI, Hanyan ZHANG, Baotong XU, Fu DING, Yaguang SUN. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis [J]. CIESC Journal, 2022, 73(8): 3625-3635. |
[11] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[12] | Shiyuan HUANG, Jian DENG, Hanqin YUAN, Guohua WANG, Xingliang WU. Experimental study on activation of peroxymonosulfate by cobalt-enhanced ferromagnet [J]. CIESC Journal, 2022, 73(7): 3045-3056. |
[13] | Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater [J]. CIESC Journal, 2022, 73(5): 2158-2173. |
[14] | Yanping JIA, Xue DING, Jian GANG, Zewei TONG, Haifeng ZHANG, Lanhe ZHANG. Optimization of process conditions for Mn enhanced Fe/C microelectrolysis and degradation mechanism of ink wastewater [J]. CIESC Journal, 2022, 73(5): 2183-2193. |
[15] | Hongrui ZHANG, Tian ZHANG, Xizi LONG, Xianning LI. Degradation characteristics of Cu-EDTA by coupling of photocatalysis and microbial fuel cell [J]. CIESC Journal, 2022, 73(5): 2149-2157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||