CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 515-522.DOI: 10.11949/j.issn.0438-1157.20170980
Previous Articles Next Articles
PENG Song, ZENG Dewang, CHEN Chao, QIU Yu, XIAO Rui
Received:
2017-07-25
Revised:
2017-08-25
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20170980
Supported by:
supported by the National Science Fund for Distinguished Young Scholars(51525601).
彭松, 曾德望, 陈超, 邱宇, 肖睿
通讯作者:
肖睿
基金资助:
国家杰出青年科学基金项目(51525601)。
CLC Number:
PENG Song, ZENG Dewang, CHEN Chao, QIU Yu, XIAO Rui. Chemical looping combustion performance of CoFeAlO4 oxygen carrier with self-supported function[J]. CIESC Journal, 2018, 69(1): 515-522.
彭松, 曾德望, 陈超, 邱宇, 肖睿. 具有自载体功能的CoFeAlO4载氧体化学链燃烧反应特性[J]. 化工学报, 2018, 69(1): 515-522.
[1] | ZHANG Y, DOROODCHI E, MOGHTADERI B. Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2[J]. Applied Energy, 2014, 113:1916-1923. |
[2] | 魏国强, 何方, 黄振, 等. 化学链燃烧技术的研究进展[J]. 化工进展, 2012, (4):713-725. WEI G Q, HE F, HUANG Z, et al. Research development in chemical-looping combustion[J]. Chemical Industry and Engineering Progress, 2012, (4):713-725. |
[3] | LYNGFELT A, LECKNER B, MATTISSON T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion[J]. Chemical Engineering Science, 2001, 56(10):3101-3113. |
[4] | 覃吴, 李渠, 董长青, 等. Co-Fe2O3纳米载氧体作用下CO化学链燃烧富集CO2[J]. 化工学报, 2014, 65(8):3136-3143. QIN W, LI Q, DONG C Q, et al. CO chemical looping combustion using Co-Fe2O3 nano oxygen carrier for enrichment of CO2[J]. CIESC Journal, 2014, 65(8):3136-3143. |
[5] | ZHENG Y, LI K, WANG H, et al. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane[J]. Applied Catalysis B:Environmental, 2017, 202:51-63. |
[6] | HOSSAIN M M, DE LASA H I. Chemical-looping combustion (CLC) for inherent CO2 separations-a review[J]. Chemical Engineering Science, 2008, 63(18):4433-4451. |
[7] | ALALWAN H A, CWIERTNY D M, GRASSIAN V H. Co3O4 nanoparticles as oxygen carriers for chemical looping combustion:a materials characterization approach to understanding oxygen carrier performance[J]. Chemical Engineering Journal, 2017, 319:279-287. |
[8] | ABAD A, MATTISSON T, LYNGFELT A, et al. The use of iron oxide as oxygen carrier in a chemical-looping reactor[J]. Fuel, 2007, 86(7):1021-1035. |
[9] | 石司默, 董长青, 覃吴, 等. Fe2O3/粉煤灰载氧体化学链燃烧实验与机理研究[J]. 化工学报, 2012, 63(12):4010-4018. SHI S M, DONG C Q, QIN W, et al. Experimental and theoretical study of Fe2O3/coal ash oxygen carrier in CLC system[J]. CIESC Journal, 2012, 63(12):4010-4018. |
[10] | GUPTA P, VELAZQUEZ-VARGAS L G, FAN L S. Syngas redox (SGR) process to produce hydrogen from coal derived syngas[J]. Energy & Fuels, 2007, 21(5):2900-2908. |
[11] | LI F, FAN L S. Clean coal conversion processes-progress and challenges[J]. Energy & Environmental Science, 2008, 1(2):248-267. |
[12] | ZENG L, KATHE M V, CHUNG E Y, et al. Some remarks on direct solid fuel combustion using chemical looping processes[J]. Current Opinion in Chemical Engineering, 2012, 1(3):290-295. |
[13] | FAN L S, ZENG L, WANG W, et al. Chemical looping processes for CO2 capture and carbonaceous fuel conversion-prospect and opportunity[J]. Energy & Environmental Science, 2012, 5(6):7254-7280. |
[14] | LI F, KIM H R, SRIDHAR D, et al. Syngas chemical looping gasification process:oxygen carrier particle selection and performance[J]. Energy & Fuels, 2009, 23(8):4182-4189. |
[15] | LI F, LUO S, SUN Z, et al. Role of metal oxide support in redox reactions of iron oxide for chemical looping applications:experiments and density functional theory calculations[J]. Energy & Environmental Science, 2011, 4(9):3661-3667. |
[16] | JIN H, OKAMOTO T, ISHIDA M. Development of a novel chemical-looping combustion:synthesis of a solid looping material of NiO/NiAl2O4[J]. Industrial & Engineering Chemistry Research, 1999, 38(1):126-132. |
[17] | JIN H, ISHIDA M. Reactivity study on a novel hydrogen fueled chemical-looping combustion[J]. International Journal of Hydrogen Energy, 2001, 26(8):889-894. |
[18] | ISHIDA M, JIN H, OKAMOTO T. A fundamental study of a new kind of medium material for chemical-looping combustion[J]. Energy & Fuels, 1996, 10(4):958-963. |
[19] | SHULMAN A, LINDERHOLM C, MATTISSON T, et al. High reactivity and mechanical durability of NiO/NiAl2O4 and NiO/NiAl2O4/MgAl2O4 oxygen carrier particles used for more than 1000 h in a 10 kW CLC reactor[J]. Industrial & Engineering Chemistry Research, 2009, 48(15):7400-7405. |
[20] | ISHIDA M, YAMAMOTO M, OHBA T. Experimental results of chemical-looping combustion with NiO/NiAl2O4 particle circulation at 1200℃[J]. Energy Conversion and Management, 2002, 43(9):1469-1478. |
[21] | JIN H, OKAMOTO T, ISHIDA M. Development of a novel chemical-looping combustion:synthesis of a looping material with a double metal oxide of CoO-NiO[J]. Energy & Fuels, 1998, 12(6):1272-1277. |
[22] | OTOMO J, FURUMOTO Y, HATANO H, et al. Nickel oxide redox processes with oxide ion conductor-supported nickel oxide in dry and humidified methane:effect of oxide ion conductors on induction period in nickel oxide reduction and subsequent hydrogen production[J]. Fuel, 2013, 104:691-697. |
[23] | AZADI P, OTOMO J, HATANO H, et al. Interactions of supported nickel and nickel oxide catalysts with methane and steam at high temperatures[J]. Chemical Engineering Science, 2011, 66(18):4196-4202. |
[24] | ZAFAR Q, MATTISSON T, GEVERT B. Integrated hydrogen and power production with CO2 capture using chemical-looping reforming redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support[J]. Industrial & Engineering Chemistry Research, 2005, 44(10):3485-3496. |
[25] | 王保文, 赵海波, 郑瑛, 等. 惰性载体Al2O3对Fe2O3及CuO氧载体煤化学链燃烧的影响[J]. 中国电机工程学报, 2011, (32):53-61. WANG B W, ZHAO H B, ZHENG Y, et al. Effect of inert support Al2O3 on the chemical looping combustion of coal with Fe2O3 and CuO-based oxygen carrier[J]. Proceedings of the CSEE, 2011, (32):53-61. |
[26] | 蒋林林, 赵海波, 张少华, 等. 煤基化学链燃烧技术的Fe2O3/Al2O3氧载体研究[J]. 工程热物理学报, 2010, (6):1053-1056. JIANG L L, ZHAO H B, ZHANG S H, et al. Fe2O3/Al2O3 oxygen carriers for chemical looping combustion fueled by coal char[J]. Journal of Engineering Thermophysics, 2010, (6):1053-1056. |
[27] | 蒋林林, 赵海波, 张少华, 等. 溶胶凝胶Fe2O3/Al2O3氧载体与甲烷的循环反应性研究[J]. 工程热物理学报, 2011, (2):329-332. JIANG L L, ZHAO H B, ZHANG S H, et al. Multiple-cycle reaction performance of sol-gel-derived Fe2O3/Al2O3 oxygen carrier with methane[J]. Journal of Engineering Thermophysics, 2011, (2):329-332. |
[28] | GANESH I, JOHNSON R, RAO G, et al. Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder[J]. Ceramics International, 2005, 31(1):67-74. |
[29] | CHEN J Y, MILLER J T, GERKEN J B, et al. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst:promotion of activity by a redox-inert metal ion[J]. Energy & Environmental Science, 2014, 7(4):1382-1386. |
[30] | CHEN J Y, MILLER J T, GERKEN J B, et al. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst:promotion of activity by a redox-inert metal ion[J]. Energy & Environmental Science, 2014, 7(4):1382-1386. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[5] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[6] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[7] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[8] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[9] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[10] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[11] | Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754. |
[12] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
[13] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[14] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[15] | Jiachen SUN, Chunlei PEI, Sai CHEN, Zhijian ZHAO, Shengbao HE, Jinlong GONG. Advances in chemical-looping oxidative dehydrogenation of light alkanes [J]. CIESC Journal, 2023, 74(1): 205-223. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 653
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 394
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||