[1] |
ZHANG Y, DOROODCHI E, MOGHTADERI B. Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2[J]. Applied Energy, 2014, 113:1916-1923.
|
[2] |
魏国强, 何方, 黄振, 等. 化学链燃烧技术的研究进展[J]. 化工进展, 2012, (4):713-725. WEI G Q, HE F, HUANG Z, et al. Research development in chemical-looping combustion[J]. Chemical Industry and Engineering Progress, 2012, (4):713-725.
|
[3] |
LYNGFELT A, LECKNER B, MATTISSON T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion[J]. Chemical Engineering Science, 2001, 56(10):3101-3113.
|
[4] |
覃吴, 李渠, 董长青, 等. Co-Fe2O3纳米载氧体作用下CO化学链燃烧富集CO2[J]. 化工学报, 2014, 65(8):3136-3143. QIN W, LI Q, DONG C Q, et al. CO chemical looping combustion using Co-Fe2O3 nano oxygen carrier for enrichment of CO2[J]. CIESC Journal, 2014, 65(8):3136-3143.
|
[5] |
ZHENG Y, LI K, WANG H, et al. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane[J]. Applied Catalysis B:Environmental, 2017, 202:51-63.
|
[6] |
HOSSAIN M M, DE LASA H I. Chemical-looping combustion (CLC) for inherent CO2 separations-a review[J]. Chemical Engineering Science, 2008, 63(18):4433-4451.
|
[7] |
ALALWAN H A, CWIERTNY D M, GRASSIAN V H. Co3O4 nanoparticles as oxygen carriers for chemical looping combustion:a materials characterization approach to understanding oxygen carrier performance[J]. Chemical Engineering Journal, 2017, 319:279-287.
|
[8] |
ABAD A, MATTISSON T, LYNGFELT A, et al. The use of iron oxide as oxygen carrier in a chemical-looping reactor[J]. Fuel, 2007, 86(7):1021-1035.
|
[9] |
石司默, 董长青, 覃吴, 等. Fe2O3/粉煤灰载氧体化学链燃烧实验与机理研究[J]. 化工学报, 2012, 63(12):4010-4018. SHI S M, DONG C Q, QIN W, et al. Experimental and theoretical study of Fe2O3/coal ash oxygen carrier in CLC system[J]. CIESC Journal, 2012, 63(12):4010-4018.
|
[10] |
GUPTA P, VELAZQUEZ-VARGAS L G, FAN L S. Syngas redox (SGR) process to produce hydrogen from coal derived syngas[J]. Energy & Fuels, 2007, 21(5):2900-2908.
|
[11] |
LI F, FAN L S. Clean coal conversion processes-progress and challenges[J]. Energy & Environmental Science, 2008, 1(2):248-267.
|
[12] |
ZENG L, KATHE M V, CHUNG E Y, et al. Some remarks on direct solid fuel combustion using chemical looping processes[J]. Current Opinion in Chemical Engineering, 2012, 1(3):290-295.
|
[13] |
FAN L S, ZENG L, WANG W, et al. Chemical looping processes for CO2 capture and carbonaceous fuel conversion-prospect and opportunity[J]. Energy & Environmental Science, 2012, 5(6):7254-7280.
|
[14] |
LI F, KIM H R, SRIDHAR D, et al. Syngas chemical looping gasification process:oxygen carrier particle selection and performance[J]. Energy & Fuels, 2009, 23(8):4182-4189.
|
[15] |
LI F, LUO S, SUN Z, et al. Role of metal oxide support in redox reactions of iron oxide for chemical looping applications:experiments and density functional theory calculations[J]. Energy & Environmental Science, 2011, 4(9):3661-3667.
|
[16] |
JIN H, OKAMOTO T, ISHIDA M. Development of a novel chemical-looping combustion:synthesis of a solid looping material of NiO/NiAl2O4[J]. Industrial & Engineering Chemistry Research, 1999, 38(1):126-132.
|
[17] |
JIN H, ISHIDA M. Reactivity study on a novel hydrogen fueled chemical-looping combustion[J]. International Journal of Hydrogen Energy, 2001, 26(8):889-894.
|
[18] |
ISHIDA M, JIN H, OKAMOTO T. A fundamental study of a new kind of medium material for chemical-looping combustion[J]. Energy & Fuels, 1996, 10(4):958-963.
|
[19] |
SHULMAN A, LINDERHOLM C, MATTISSON T, et al. High reactivity and mechanical durability of NiO/NiAl2O4 and NiO/NiAl2O4/MgAl2O4 oxygen carrier particles used for more than 1000 h in a 10 kW CLC reactor[J]. Industrial & Engineering Chemistry Research, 2009, 48(15):7400-7405.
|
[20] |
ISHIDA M, YAMAMOTO M, OHBA T. Experimental results of chemical-looping combustion with NiO/NiAl2O4 particle circulation at 1200℃[J]. Energy Conversion and Management, 2002, 43(9):1469-1478.
|
[21] |
JIN H, OKAMOTO T, ISHIDA M. Development of a novel chemical-looping combustion:synthesis of a looping material with a double metal oxide of CoO-NiO[J]. Energy & Fuels, 1998, 12(6):1272-1277.
|
[22] |
OTOMO J, FURUMOTO Y, HATANO H, et al. Nickel oxide redox processes with oxide ion conductor-supported nickel oxide in dry and humidified methane:effect of oxide ion conductors on induction period in nickel oxide reduction and subsequent hydrogen production[J]. Fuel, 2013, 104:691-697.
|
[23] |
AZADI P, OTOMO J, HATANO H, et al. Interactions of supported nickel and nickel oxide catalysts with methane and steam at high temperatures[J]. Chemical Engineering Science, 2011, 66(18):4196-4202.
|
[24] |
ZAFAR Q, MATTISSON T, GEVERT B. Integrated hydrogen and power production with CO2 capture using chemical-looping reforming redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support[J]. Industrial & Engineering Chemistry Research, 2005, 44(10):3485-3496.
|
[25] |
王保文, 赵海波, 郑瑛, 等. 惰性载体Al2O3对Fe2O3及CuO氧载体煤化学链燃烧的影响[J]. 中国电机工程学报, 2011, (32):53-61. WANG B W, ZHAO H B, ZHENG Y, et al. Effect of inert support Al2O3 on the chemical looping combustion of coal with Fe2O3 and CuO-based oxygen carrier[J]. Proceedings of the CSEE, 2011, (32):53-61.
|
[26] |
蒋林林, 赵海波, 张少华, 等. 煤基化学链燃烧技术的Fe2O3/Al2O3氧载体研究[J]. 工程热物理学报, 2010, (6):1053-1056. JIANG L L, ZHAO H B, ZHANG S H, et al. Fe2O3/Al2O3 oxygen carriers for chemical looping combustion fueled by coal char[J]. Journal of Engineering Thermophysics, 2010, (6):1053-1056.
|
[27] |
蒋林林, 赵海波, 张少华, 等. 溶胶凝胶Fe2O3/Al2O3氧载体与甲烷的循环反应性研究[J]. 工程热物理学报, 2011, (2):329-332. JIANG L L, ZHAO H B, ZHANG S H, et al. Multiple-cycle reaction performance of sol-gel-derived Fe2O3/Al2O3 oxygen carrier with methane[J]. Journal of Engineering Thermophysics, 2011, (2):329-332.
|
[28] |
GANESH I, JOHNSON R, RAO G, et al. Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder[J]. Ceramics International, 2005, 31(1):67-74.
|
[29] |
CHEN J Y, MILLER J T, GERKEN J B, et al. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst:promotion of activity by a redox-inert metal ion[J]. Energy & Environmental Science, 2014, 7(4):1382-1386.
|
[30] |
CHEN J Y, MILLER J T, GERKEN J B, et al. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst:promotion of activity by a redox-inert metal ion[J]. Energy & Environmental Science, 2014, 7(4):1382-1386.
|