[1] |
黄道平, 刘乙奇, 李艳. 软测量在污水处理过程中的研究与应用[J]. 化工学报, 2011, 62(1):1-9. HUANG D P, LIU Y Q, LI Y. Soft sensor research and its application in wastewater treatment[J]. CIESC Journal, 2011, 62(1):1-9.
|
[2] |
曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3):788-800. CAO P F, LUO X L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3):788-800.
|
[3] |
KANO M, NAKAGAWA Y. Data-based process monitoring, process control, and quality improvement:recent developments and applications in steel industry[J]. Computers & Chemical Engineering, 2008, 32(1/2):12-24.
|
[4] |
KADLEC P, GABRYS B, STRANDT S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4):795-814.
|
[5] |
BORCHANI H, VARANDO G, BIELZA C. A survey on multi-output regression[J]. Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery, 2015, 5(5):216-233.
|
[6] |
ZHONG W, YU J. MIMO soft sensors for estimating product quality with on-line correction[J]. Chemical Engineering Research & Design, 2000, 78(4):612-620.
|
[7] |
KOCEV D, D?EROSKI S, WHITE M D, et al. Using single-and multi target regression trees and ensembles to model a compound index of vegetation condition[J]. Ecological Modelling, 2009, 220(8):1159-1168.
|
[8] |
BREIMAN L, FRIEDMAN J H. Predicting multivariate responses in multiple linear regression[J]. Journal of the Royal Statistical Society, 1997, 59(1):3-54.
|
[9] |
Similä T, TIKKA J. Input selection and shrinkage in multiresponse linear regression[J]. Computational Statistics & Data Analysis, 2007, 52(1):406-422.
|
[10] |
FU Y, SU H, CHU J. MIMO soft-sensor model of nutrient content for compound fertilizer based on hybrid modeling technique 1[J]. Chinese Journal of Chemical Engineering, 2007, 15(4):554-559.
|
[11] |
郭民, 祝曙光, 韩红桂. 基于模糊神经网络的出水总磷和氨氮软测量方法研究[J]. 计算机与应用化学, 2017, 34(1):79-84. GUO M, ZHU S G, HAN H G. Soft-sensor method for total phosphorus and ammonia nitrogen based on fuzzy neural networks[J]. Computers and Applied Chemistry, 2017, 34(1):79-84.
|
[12] |
QIU Y, LIU Y, HUANG D. Date-driven soft-sensor design for biological wastewater treatment using deep neural networks and genetic algorithms[J]. Journal of Chemical Engineering of Japan, 2016, 49(10):925-936.
|
[13] |
KADLEC P, GRBI? R, GABRYS B. Review of adaptation mechanisms for data-driven soft sensors[J]. Computers & Chemical Engineering, 2011, 35(1):1-24.
|
[14] |
JIANG J H, BERRY R J, SIESLER H W, et al. Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data[J]. Analytical Chemistry, 2002, 74(14):3555-3565.
|
[15] |
DAYAL B S, MACGREGOR J F. Recursive exponentially weighted PLS and its applications to adaptive control and prediction[J]. Journal of Process Control, 1997, 7(3):169-179.
|
[16] |
QIN S J. Recursive PLS algorithms for adaptive data modeling[J]. Computers & Chemical Engineering, 1998, 22(4/5):503-514.
|
[17] |
CHENG C, CHIU M S. A new data-based methodology for nonlinear process modeling[J]. Chemical Engineering Science, 2004, 59(13):2801-2810.
|
[18] |
FUJIWARA K, KANO M, HASEBE S, et al. Soft-sensor development using correlation-based just-in-time modeling[J]. AIChE Journal, 2009, 55(7):1754-1765.
|
[19] |
刘乙奇, 黄道平, 李艳. 基于改进JIT算法的软测量建模及其在污水处理中的应用[J]. 华南理工大学学报(自然科学版), 2011, 39(5):55-60+67. LIU Y Q, HUANG D P, LI Y. Enhanced JIT-based soft-sensing modeling and its application to wastewater treatment[J]. Journal of South China University of Technology(Natural Science Edition), 2011, 39(5):55-60+67.
|
[20] |
KANEKO H, ARAKAWA M, FUNATSU K. Development of a new soft sensor method using independent component analysis and partial least squares[J]. AIChE J., 2009, 55(1):87-98.
|
[21] |
KANEKO H, ARAKAWA M, FUNATSU K. Applicability domains and accuracy of prediction of soft sensor models[J]. AIChE J., 2011, 57(6):1506-1513.
|
[22] |
ANDERSEN C M, BRO R. Variable selection in regression-a tutorial[J]. Journal of Chemometrics, 2010, 24(11/12):728-737.
|
[23] |
NORGAARD L, SAUDLAND A, WAGNER J, et al. Interval partial least-squares regression (iPLS):a comparative chemometric study with an example from near-infrared spectroscopy[J]. Applied Spectroscopy, 2000, 54(3):413-419.
|
[24] |
MEHMOOD T, LILAND K H, SNIPEN L, et al. A review of variable selection methods in Partial Least Squares Regression[J]. Chemometrics & Intelligent Laboratory Systems, 2012, 118(16):62-69.
|
[25] |
KANEKO H, FUNATSU K. Maintenance-free soft sensor models with time difference of process variables[J]. Chemometrics & Intelligent Laboratory Systems, 2011, 107(2):312-317.
|
[26] |
KANEKO H, FUNATSU K. Automatic determination method based on cross-validation for optimal intervals of time difference[J]. Journal of Chemical Engineering of Japan, 2013, 46(3):219-225.
|
[27] |
KANEKO H, FUNATSU K. Discussion on time difference models and intervals of time difference for application of soft sensors[J]. Industrial and Engineering Chemistry Research, 2013, 52(3):1322-1334.
|
[28] |
ERIKSSON L, JOHANSSON E, ANTTI H, et al. Multi-and Megavariate Data Analysis[M]//Metabonomics in Toxicity Assessment. Umeå:Umetrics Acodemy, 2001:362.
|
[29] |
CHONG I G, JUN C H. Performance of some variable selection methods when multicollinearity is present[J]. Chemometrics & Intelligent Laboratory Systems, 2005, 78(1):103-112.
|
[30] |
GOSSELIN R, RODRIGUE D, DUCHESNE C. A Bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications[J]. Chemometrics & Intelligent Laboratory Systems, 2010, 100(1):12-21.
|