[1] |
邵峰, 黄启龙, 戴维葆, 等. 实用机组定滑压运行曲线试验研究[J]. 动力工程学报, 2013, 33(8):643-647. SHAO F, HUANG Q L, DAI W B, et al. Experimental research on practical rated-sliding pressure operation curve of power units[J]. Journal of Chinese Society of Power Engineering, 2013, 33(8):643-647.
|
[2] |
VOUMVOULAKIS E M, HATZIARGYRIOU N D. A particle swarm optimization method for power system dynamic security control[J]. IEEE Transactions on Power Systems, 2010, 25(2):1032-1041.
|
[3] |
闫顺林, 兰红颖. 进汽参数变化对汽轮机热耗率影响的分析[J]. 汽轮机技术, 2013, 55(1):62-64. YAN S L, LAN H Y. The analysis of effect of steam parameters on turbine heat rate[J]. Turbine Technology, 2013, 55(1):62-64.
|
[4] |
张文琴, 付忠广, 靳涛, 等. 基于偏最小二乘算法的热耗率回归分析[J]. 现代电力, 2009, 26(5):56-59. ZHANG W Q, FU Z G, JIN T, et al. Based on partial least squares algorithm, the heat rate regression analysis[J]. Modern Electric Power, 2009, 26(5):56-59.
|
[5] |
王惠杰, 陈林霄, 李洋, 等. 基于υ-SVM的汽轮机热耗率回归模型研究[J]. 动力工程学报, 2014, 34(8):606-611. WANG H J, CHEN L X, LI Y, et al. Study on heat rate regression model of steam turbines based on υ-SVM[J]. Journal of Chinese Society of Power Engineering, 2014, 34(8):606-611.
|
[6] |
ZHANG W P, NIU P F, LI G Q, et al. Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm[J]. Knowledge-Based Systems, 2013, 39(2):34-44.
|
[7] |
李辉. 基于在线支持向量回归算法的电站热耗率模型[J]. 中国电力, 2014, 47(7):21-25. LI H. Power plant heat rate model based on online support vector regression algorithm[J]. Electric Power, 2014, 47(7):21-25.
|
[8] |
刘超, 牛培峰, 段晓龙, 等. 基于相关向量机的汽轮机最优运行初压的确定[J]. 化工学报, 2016, 67(9):3812-3816. LIU C, NIU P F, DUAN X L, et al. Determination of optimal initial steam pressure of turbine based on relevance vector machine[J]. CIESC Journal, 2016, 67(9):3812-3816.
|
[9] |
朱誉, 冯利法, 徐治皋. 基于BP神经网络的热经济性在线计算模型[J]. 热力发电, 2008, 37(12):17-19. ZHU Y, FENG L F, XU Z G. Online calculation of steam turbine thermal performance based on BP neural network[J]. Thermal Power Generation, 2008, 37(12):17-19.
|
[10] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1):489-501.
|
[11] |
刘厦, 刘石, 任婷. 基于SA-ELM的声学层析成像温度分布重建算法[J]. 化工学报, 2017, 68(6):2434-2446. LIU S, LIU S, REN T. SA-ELM based method for reconstructing temperature distribution in acoustic tomography measurement[J]. CIESC Journal, 2017, 68(6):2434-2446.
|
[12] |
CHENG M Y, PRAYOGO D. Symbiotic organisms search:a new metaheuristic optimization algorithm[J]. Computers & Structures, 2014, 139:98-112.
|
[13] |
EZUGWU E S, ADEWUMI A O, FRINCU M E. Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem[J]. Expert Systems with Applications, 2017, 77:189-210.
|
[14] |
SAHA S, MUKHERJEE V. Optimal placement and sizing of DGs in RDS using chaos embedded SOS algorithm[J]. Iet Generation Transmission & Distribution, 2016, 10(14):3671-3680.
|
[15] |
GUHA D, ROY P, BANERJEE S. Quasi-oppositional symbiotic organism search algorithm applied to load frequency control[J]. Swarm & Evolutionary Computation, 2017, 33:46-67.
|
[16] |
UROS S, ANDRE S, AMOR C, et al. Improved adaptive fuzzy backstepping control of a magnetic levitation system based on symbiotic organism search[J]. Applied Soft Computing, 2017, 56:19-33.
|
[17] |
NANDA S J, JONWAL N. Robust nonlinear channel equalization using WNN trained by symbiotic organism search algorithm[J]. Applied Soft Computing, 2017, 57:197-209.
|
[18] |
ZHANG B Y, SUN L J, YUAN H W, et al. An improved regularized extreme learning machine based on symbiotic organisms search[C]//Industrial Electronics and Applications. IEEE, 2016:1645-1648.
|
[19] |
周虎, 赵辉, 周欢, 等. 自适应精英反向学习共生生物搜索算法[J]. 计算机工程与应用, 2016, 52(19):161-166. ZHOU H, ZHAO H, ZHOU H, et al. Symbiotic organisms search algorithm using adaptive elite opposition-based learning[J]. Computer Engineering and Applications, 2016, 52(19):161-166.
|
[20] |
LIAO T W, KUO R J. Five discrete symbiotic organisms search algorithms for simultaneous optimization of feature subset and neighborhood size of KNN classification models[J]. Applied Soft Computing, 2018, 64:581-595.
|
[21] |
EZUGWU A E, ADEWUMI A O. Soft sets based symbiotic organisms search algorithm for resource discovery in cloud computing environment[J]. Future Generation Computer Systems, 2017, 76:33-50.
|
[22] |
RAO R V, PATEL V. A multi-objective improved teaching-learning based optimization algorithm for unconstrained and constrained optimization problems[J]. International Journal of Industrial Engineering Computations, 2014, 5(1):1-22.
|
[23] |
LI X, YAO X. Cooperatively coevolving particle swarms for large scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(2):210-224.
|
[24] |
YANG M, OMIDVAR M N, LI C, et al. Efficient resource allocation in cooperative co-evolution for large-scale global optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(4):493-505.
|
[25] |
徐圆, 黄兵明, 贺彦林. 基于改进ELM的递归最小二乘时序差分强化学习算法及其应用[J]. 化工学报, 2017, 68(3):916-924. XU Y, HUANG B M, HE Y L. Recursive least-squares TD (λ) learning algorithm based on improved extreme learning machine[J].CIESC Journal, 2017, 68(3):916-924.
|
[26] |
李荣雨, 王立明. 基于ISOMAP-ELM的软测量建模及化工应用[J]. 计量学报, 2016, 37(5):548-552. LI R Y, WANG L M. Soft measurement modeling and chemical application based on ISOMAP-ELM neural network[J]. Acta Metrologica Sinica, 2016, 37(5):548-552.
|
[27] |
OJHA V K, ABRAHAM A, SNASEL V. Metaheuristic design of feedforward neural networks:a review of two decades of research[J]. Engineering Applications of Artificial Intelligence, 2017, 60:97-116.
|
[28] |
OJHA V K, ABRAHAM A, SNASEL V. Simultaneous optimization of neural network weights and active nodes using metaheuristics[C]//International Conference on Hybrid Intelligent Systems. IEEE, 2015:248-253.
|
[29] |
NIU P F, CHEN K, MA Y P, et al. Model turbine heat rate by fast learning network with tuning based on ameliorated Krill Herd algorithm[J]. Knowledge-Based Systems, 2017, 118:80-92.
|
[30] |
LIU C, NIU P, LI G, et al. A hybrid heat rate forecasting model using optimized LSSVM based on improved GSA[J]. Neural Processing Letters, 2017, 45(1):299-318.
|
[31] |
MA Y P, NIU P F, YAN S S, et al. A modified online sequential extreme learning machine for building circulation fluidized bed boiler's NOx emission model[J]. Applied Mathematics & Computation, 2018, 334:214-226.
|