[1] |
MORITIS G. Worldwide EOR survey[J]. Oil and Gas Journal, 2002, 100(15):43-47.
|
[2] |
MORITIS G. EOR continues to unlock oil resources[J]. Oil and Gas Journal, 2003, 102(14):45-49.
|
[3] |
ORR F M J. Storage of carbon dioxide in geologic formations[J]. Journal of Petroleum Technology, 2004, 56(9):90.
|
[4] |
GASPAR A T F S, LIMA G A C, SUSLICK S B. CO2 capture and storage in mature oil reservoir:physical description, EOR and economic valuation of a case of a Brazilian mature field:SPE 94181[C]//SPE Europe/EAGE Annual Conference. Spain, 2005.
|
[5] |
GASPAR A T F S, SUSLICK S B, FERREIRA D F, et al. Enhanced oil recovery with CO2 sequestration:a feasibility study of a Brazilian mature oil field:SPE 94939[C]//SPE/EPA/DOE Exploration and Production Environmental Conference. Texas, USA, 2005.
|
[6] |
GODECA M, KUUSKRAAA V, LEEUWEN T V. CO2 storage in depleted oil fields:the worldwide potential for carbon dioxide enhanced oil recovery[J]. Energy Procedia, 2011, 4(10):2162-2169.
|
[7] |
ETTEHADTAVAKKOL A, LAKE L W, BYRANT S L. CO2-EOR and storage design optimization[J]. Int. J. Greenhouse Gas Control, 2014, 25:79-92.
|
[8] |
ALVARADO V, MANRIQUE E. Enhanced oil recovery:an update review[J]. Energies, 2010, 3(9):1529-1575.
|
[9] |
FREEMAN D. Effect of stress sensitivity on displacement efficiency in CO2 flooding for fractured low permeability reservoirs[J]. Petroleum Science, 2009, 6(3):277-283.
|
[10] |
LIU Y, TENG Y, JIANG L, et al. Displacement front behavior of near miscible CO2 flooding in decane saturated synthetic sandstone cores revealed by magnetic resonance imaging[J]. Magnetic Resonance Imaging, 2017, 37:171-178.
|
[11] |
CHEN S L, WU W X, TANG J B. Study on minimum miscible pressure and oil displacement law for CO2 flooding[J]. Advanced Materials Research, 2012, 391/392:1051-1054.
|
[12] |
LIAO X, ZHAO H. The evaluation of CO2 miscible displacement and storage effect in mature oil fields[J]. Liquid Fuels Technology, 2014, 32(1):8-14.
|
[13] |
HOLM L W. Evolution of the carbon-dioxide flooding processes[J]. Journal of Petroleum Technology, 1987, 39(11):1337-1342.
|
[14] |
PATZEK T W. Field application of foam for mobility improvement and profile control[J]. SPE Reservoir Engineering, 1996, 11(2):79-85.
|
[15] |
ROSSEN W R. Foams in enhanced oil recovery//Foams:Theory, Measurements and Applications[M]. New York:Marcel Dekker, 1996:413-464.
|
[16] |
ROSSEN W R, ZEILINGER S C, SHI J X, et al. Simplified mechanistic simulation of foam processes in porous media[J]. SPE J., 1999, 4:279-287.
|
[17] |
DU D X, SUN S B, ZHANG N, et al. Pressure distribution measurements for CO2 foam flow in porous media[J]. Journal of Porous Media, 2015, 18(11):1119-1125.
|
[18] |
DU D X, WANG D X, JIA N H, et al. Experiments on CO2 foam seepage characteristics in porous media[J]. Petroleum Exploration and Development, 2016, 43(3):499-505.
|
[19] |
SINGH R, MOHANTY K K. Foam flow in a layered, heterogeneous medium:a visualization study[J]. Fuel, 2017, 197:58-69.
|
[20] |
CHEN H, YANG S L, REN S S, et al. Crude oil displacement efficiency of produced gas re-injection[J]. International Journal of Green Energy, 2013, 10(6):566-573.
|
[21] |
WANG X, ZHANG S, GU Y. Four important onset pressures for mutual interactions between each of three crude oils and CO2[J]. Journal of Chemical & Engineering Data, 2010, 55(10):4390-4398.
|
[22] |
YANG D Y, GU Y G. Interfacial interactions between crude oil and CO2 under reservoir conditions[J]. Liquid Fuels Technology, 2005, 23(9/10):1099-1112.
|
[23] |
JAEGER P T, EGGERS R, BAUMGARTL H. Interfacial properties of high viscous liquids in a supercritical carbon dioxide atmosphere[J]. Journal of Supercritical Fluids, 2002, 24(3):203-217.
|
[24] |
JAEGER P T, ALOTAIBI M B, NASRELDIN H A. Influence of compressed carbon dioxide on the capillarity of the gas-crude oil-reservoir water system[J]. Journal of Chemical & Engineering Data, 2010, 55(11):5246-5251.
|
[25] |
ZHANG K, JIA N, ZENG F. Application of predicted bubble-rising velocities for estimating the minimum miscibility pressures of the light crude oil-CO2 systems with the rising bubble apparatus[J]. Fuel, 2018, 220:412-419.
|
[26] |
RAO D N, LEE J I. Determination of gas-oil miscibility conditions by interfacial tension measurements[J]. Journal of Colloid & Interface Science, 2003, 262(2):474-482.
|
[27] |
KOGEL A, DAHMAN N, EDERER H. Mass transfer coefficient from pendant water drop measurement in compressed carbon dioxide[J]. J. Supercritical Fluids, 2004, 29:237-249.
|
[28] |
WU B H, JIANG L L, LIU Y, et al. Pore-scale mass transfer experiments in porous media by X-Ray CT scanning[J]. Energy Procedia, 2017, 105:5079-5084.
|
[29] |
HAAJIZADEH M, FAYERS F J, COCKIN A P, et al. On the importance of dispersion and heterogeneity in the compositional simulation of miscible gas processes:SPE 57264[C]//1999 SPE Asia-Pacific Improved Oil Recovery Conference. Kuala Lumpur, Malaysia, 1999.
|
[30] |
JU B S, WU Y S, QIN J S, et al. Modeling CO2 miscible flooding for enhance oil recovery[J]. Petroleum Science, 2012, 9:192-198.
|
[31] |
韩雷豹. 利用VIT法确定CO2-油相体系相平衡特性的实验研究[D]. 青岛:青岛科技大学, 2018. HAN L B. Experimental studies on phase equilibria characteristics of CO2/oil system with VIT method[D]. Qingdao:Qingdao University of Science and Technology, 2018.
|