[1] |
MOULLEC Y L. Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle[J]. Energy, 2013, 49(1):32-46.
|
[2] |
MECHERI M, MOULLEC Y L. Supercritical CO2 Brayton cycles for coal-fired power plants[J]. Energy, 2016, 103(5):758-771.
|
[3] |
曹春辉, 李惟毅. 夹点对超临界二氧化碳布雷顿再压缩循环性能的影响[J]. 化工进展, 2017, 36(11):3986-3992. CAO C H, LI W Y. Effect of pinch point on thermal and exergetic performance of supercritical carbon dioxide Brayton recompression cycle[J]. Chemical Industry and Engineering Progress, 2017, 36(11):3986-3992.
|
[4] |
MUTO Y, ISHIYAMA S, KATO Y, et al. Application of supercritical CO2 gas turbine for the fossil fired thermal plant[J]. Journal of Energy and Power Engineering, 2010, 4(9):7-15.
|
[5] |
廖吉香, 刘兴业, 郑群, 等. 超临界CO2发电循环特性分析[J]. 热能动力工程, 2016, 31(5):40-46. LIAO J X, LIU X Y, ZHENG Q, et al. Analysis of the power generation cycle characteristics of supercritical carbon dioxide[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(5):40-46.
|
[6] |
陈渝楠, 张一帆, 刘文娟, 等. 超临界二氧化碳火力发电系统模拟研究[J]. 热力发电, 2017, 46(2):22-41. CHEN Y N, ZHANG Y F, LIU W J, et al. Simulation study on supercritical carbon dioxide thermal power system[J]. Thermal Power Generation, 2017, 46(2):22-41.
|
[7] |
张一帆, 王生鹏, 刘文娟, 等. 超临界二氧化碳再压缩再热火力发电系统关键参数的研究[J]. 动力工程学报, 2016, 36(10):827-833. ZHANG Y F, WANG S P, LIU W J, et al. Study on key parameters of a supercritical fossil-fired power system with CO2 recompression and reheat cycles[J]. Journal of Chinese Society of Power Engineering, 2016, 36(10):827-833.
|
[8] |
王冠邦, 张信荣. 热电储能技术及二氧化碳在其中的应用[J]. 储能科学与技术, 2017, 6(6):1239-1249. WANG G B, ZHANG X R. Thermoelectric energy storage system and applications using CO2 cycles[J]. Energy Storage Science and Technology, 2017, 6(6):1239-1249.
|
[9] |
赵新宝, 鲁金涛, 袁勇, 等. 超临界二氧化碳布雷顿循环在发电机组中的应用和关键部件选材分析[J]. 中国电机工程学报, 2016, 36(1):154-161. ZHAO X B, LU J T, YUAN Y, et al. Analysis of supercritical carbon dioxide Brayton cycle and candidate materials of key hot components for power plants[J]. Proceedings of the CSEE, 2016, 36(1):154-161.
|
[10] |
鲁金涛, 赵新宝, 袁勇, 等. 超临界二氧化碳布雷顿循环系统中材料的腐蚀行为[J]. 中国电机工程学报, 2016, 36(3):739-745. LU J T, ZHAO X B, YUAN Y, et al. Corrosion behavior of alloys in supercritical CO2 Brayton cycle power generation[J]. Proceedings of the CSEE, 2016, 36(3):739-745.
|
[11] |
董其伍, 赵松伟, 刘敏姗. 超临界二氧化碳管内流动及换热特性分析研究[J]. 制冷与空调, 2008, 22(1):1-5. DONG Q W, ZHAO S W, LIU M S. The analysis study of supercritical carbon dioxide flow and heat transfer characteristics in tube[J]. Refrigeration and Air Conditioning, 2008, 22(1):1-5.
|
[12] |
吕静, 李昶, 石冬冬, 等. 二氧化碳微通道蒸发器压降特性的模拟验证[J]. 化工学报, 2017, 68(5):1862-1873. LYU J, LI C, SHI D D, et al. Simulate verification of CO2 microchannel evaporator pressure drop[J]. CIESC Journal, 2017, 68(5):1862-1873.
|
[13] |
周云龙, 王红波. 矩形小通道内气液两相流垂直向上流动特性[J]. 化工学报, 2011, 62(5):1226-1232. ZHOU Y L, WANG H B. Flow characteristics of gas-liquid two-phase flow in small vertical rectangular channel[J]. CIESC Journal, 2011, 62(5):1226-1232.
|
[14] |
姜林林, 柳建华, 张良, 等. 水平微细管内CO2流动沸腾压降特性[J]. 化工学报, 2017, 68(12):4576-4584. JIANG L L, LIU J H, ZHANG L, et al. Flow boiling pressure drop characteristics of CO2 in horizontal micro tubes[J]. CIESC Journal, 2017, 68(12):4576-4584.
|
[15] |
CHAKRYGIN V G. The effect of non-uniform heating on pressure losses at supercritical pressures[J]. Thermal Engineering, 1967, 14(1):77-83.
|
[16] |
FANG X D, XU Y, SU X H, et al. Pressure drop and friction factor correlations of supercritical flow[J]. Nuclear Engineering and Design, 2012, 242:323-330.
|
[17] |
FANG X D, XU Y, ZHOU Z R. New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations[J]. Nuclear Engineering and Design, 2011, 241:897-902.
|
[18] |
TARASOVA N V, LEONT'EV A I. Hydraulic resistance during flow of water in heated pipes at supercritical pressures[J]. High Temperature, 1938, 6(4):721-722.
|
[19] |
POPOV V N. Theoretical calculation of heat transfer and friction resistance for supercritical carbon dioxide[C]//Proceedings of the 2nd All-Soviet Union Conference on Heat and Mass Transfer. Minsk, Belarus, 1967, 62(1):41-48.
|
[20] |
PETUKHOV B S, KURGANOV V A, ANKUDINOW V B. Heat transfer and flow resistance in the turbulent pipe flow of a fluid with near-critical state parameters[J]. High Temperature, 1983, 21(1):81-89.
|
[21] |
KURGANOV V A, KAPTIL'NYI A G, ANKUDINOW V B. Total flow resistance and fluid friction associated with ascending and descending supercritical fluid flow in heated pipes[J]. High Temperature, 1989, 27(1):87-94.
|
[22] |
WANG H, BI Q C, WU G, et al. Experimental investigation on pressure drop of supercritical water in an annular channel[J]. The Journal of Supercritical Fluids, 2018, 131(8):47-57.
|
[23] |
KIRILLOV P L, YUREV Y S, BOBKOV V P. Handbook of Thermal-Hydraulic Calculations[M]. Moscow, Russia:Energoatomizdat Publishing House, 1990.
|
[24] |
王淑香, 张伟, 徐进良, 等. 二氧化碳传热实验台的构建[J]. 流体机械, 2012, 40(5):71-75. WANG S X, ZHANG W, XU J L, et al. Construction of experimental setup for heat transfer of carbon dioxide[J]. Fluid Machinery, 2012, 40(5):71-75.
|
[25] |
PIOROI L, DUFFEY R B. Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications Preface[M]. New York, USA:American Society of Mechanical Engineers, 2007, 1(47):175-187.
|
[26] |
ORNATSKIY A P, DASHKIEV Y G, PERKOV V G. Steam Generators of Supercritical Pressures[M]. Kiev, Ukraine:Vyscha Shkola Publishing House, 1956.
|
[27] |
陈听宽, 郑建学, 罗毓珊, 等. 超临界压力下内螺纹管摩擦阻力特性研究[J]. 发电设备, 1999, 4:24-28. CHEN T K, ZHENG J X, LUO Y S, et al. A study of frictional flow resistance within internally ribbed tubes under supercritical pressures[J]. Power Equipment, 1999, 4:24-28.
|
[28] |
张伟强, 李会雄, 张庆, 等. 内螺纹管内超临界水的流动阻力特性试验研究[J]. 中国电机工程学报, 2013, 33(17):1-7. ZHANG W Q, LI H X, ZHANG Q, et al. Experimental study on flow resistance of supercritical pressure water in an internally ribbed tube[J]. Proceedings of the CSEE, 2013, 33(17):1-7.
|
[29] |
FILONENKO G K. Hydraulic resistance of pipelines[J]. Thermal Engineering, 1954, 4:40-44.
|
[30] |
MIKHEEV M A. Fundamentals of Heat Transfer[M]. Moscow, Russia:Gosenergoizdat Publishing House, 1956.
|