[1] |
ALALEWI A, JIANG C. Bacterial influence on textile wastewater decolorization[J]. Journal of Environmental protection, 2012, 3(28):889-903.
|
[2] |
OON Y S, ONG S A, HO L N, et al. Disclosing the synergistic mechanisms of azo dye degradation and bioelectricity generation in a microbial fuel cell[J]. Chemical Engineering Journal, 2018, 344:236-245.
|
[3] |
BABU B R, PARANDE K A, RAGHU S, et. al. Cotton textile processing:waste generation and effluent treatment[J]. Journal of Cotton Science, 2007, 11(3):141-153.
|
[4] |
KARIM M E, DHAR K, HOSSAIN M T. Decolorization of textile reactive dyes by bacterial monoculture and consortium screened from textile dyeing effluent[J]. Journal of Genetic Engineering and Biotechnology, 2018, DOI:10.1016/j.jgeb.2018.02.005.
|
[5] |
CIARDELLI G, RANIERI N. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation[J]. Water Research, 2001, 35(2):567-572.
|
[6] |
KHOUNI I, MARROT B, MOULIN P, et al. Decolourization of the reconstituted textile effluent by different process treatments:enzymatic catalysis, coagulation/flocculation and nanofiltration processes[J]. Desalination, 2011, 268(1/2/3):27-37.
|
[7] |
SUN P, XU L, LI J, et al. Hydrothermal synthesis of mesoporous Mg3Si2O5(OH)4 microspheres as high-performance adsorbents for dye removal[J]. Chemical Engineering Journal, 2018, 334:377-388.
|
[8] |
BABU J, MURTHY Z V P. Treatment of textile dyes containing wastewaters with PES/PVA thin film composite nanofiltration membranes[J]. Separation and Purification Technology, 2017, 183:66-72.
|
[9] |
GOZÁLVEZ-ZAFRILLA J M, SANZ-ESCRIBANO D, LORA-GARCÍA J, et al. Nanofiltration of secondary effluent for wastewater reuse in the textile industry[J]. Desalination, 2008, 222(1/2/3):272-279.
|
[10] |
DE FLORIO L, GIORDANO A, MATTIOLI D. Nanofiltration of low-contaminated textile rinsing effluents for on-site treatment and reuse[J]. Desalination, 2005, 181(1/2/3):283-292.
|
[11] |
WEBER E J, ADAMS R L. Chemical-and sediment-mediated reduction of the azo dye disperse blue 79[J]. Environmental science & technology, 1995, 29(5):1163-1170.
|
[12] |
JEONG J, KUMAR R S, MERGU N, et al. Photophysical, electrochemical, thermal and aggregation properties of new metal phthalocyanines[J]. Journal of Molecular Structure, 2017, 1147:469-479.
|
[13] |
NYOKONG T. Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines[J]. Coordination Chemistry Reviews, 2007, 251(13/14):1707-1722.
|
[14] |
ARC M, BOZO?LU C, ERDO?MU? A, et al. Electrochemical and spectroelectrochemical properties of novel lutetium (Ⅲ) mono-and bis-phthalocyanines[J]. Electrochimica Acta, 2013, 113:668-678.
|
[15] |
AZZOUZI S, ALI M B, ABBAS M N, et al. Novel iron (Ⅲ) phthalocyanine derivative functionalized semiconductor based transducers for the detection of citrate[J]. Organic Electronics, 2016, 34:200-207.
|
[16] |
JIANG Y, HUANG W, ZHUANG X, et al. Thickness modulation on semiconductor towards high performance gas sensors based on organic thin film transistors[J]. Materials Science and Engineering:B, 2017, 226:107-113.
|
[17] |
DING X, HAN B H. Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation[J]. Angewandte Chemie, 2015, 54(22):6536-6539.
|
[18] |
KIM I, HAVERINEN H M, WANG Z, et. al. Efficient organic solar cells based on planar metallophthalocyanines[J]. Chemistry of Materials, 2009, 21(18):4256-4260.
|
[19] |
SIMÁNDI L I. Dioxygen activation and homogeneous catalytic oxidation[M]//The Activation of Dioxygen and Homogeneous Catalytic Oxidation. US:Springer, 1991.
|
[20] |
Al K E. The Porphyrin Handbook[M]. Academic Press, 2003.
|
[21] |
SOLER J M, ARTACHO E, GALE J D, et al. The SIESTA method for ab initio order-N materials simulation[J]. Journal of Physics:Condensed Matter, 2002, 14(11):2745-2779.
|
[22] |
TROULLIER N, MARTINS J L. Efficient pseudopotentials for plane-wave calculations[J]. Physical Review B, 1991, 43(3):1993-2006.
|
[23] |
NEMYKIN V N, POLSHYNA A E, BORISENKOVA S A, et al. Preparation, characterization, and catalytic activity of synthetic carbon-supported (phthalocyaninato)cobalt-containing complexes in dodecane-1-thiol oxidation reaction.[J]. Journal of Molecular Catalysis A Chemical, 2007, 264(1):103-109.
|
[24] |
LI N, LU W Y, PEI K, et al. Formation of high-valent cobalt-oxo phthalocyanine species in a cellulose matrix for eliminating organic pollutants[J]. Applied Catalysis B:Environmental, 2015, 163:105-112.
|
[25] |
李楠, 卢琴, 高美萍, 等. 碳纳米纤维增强钴酞菁催化氧化染料的性能研究[J]. 中国科学:化学, 2013, 43(6):774-782. LI N, LU Q, GAO M P, et al. Performance of carbon nanofiber reinforced catalytic oxidation of cobalt phthalocyanine[J]. Science in China, 2013, 43(6):774-782.
|
[26] |
POLYAKOV O V, BADALYAN A M, BAKHTUROVA L F. The role of electrolyte concentration in the decomposition of water and generation of electrons under conditions of anodic microdischarges[J]. High Energy Chemistry, 2005, 39(2):111-113.
|
[27] |
KHODJA A A, SEHILI T, PILICHOWSKI J F, et al. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2001, 141(2-3):231-239.
|
[28] |
ABEDINI A, DAUD A R, ABDUL HAMID M A, et al. Radiolytic formation of Fe3O4 nanoparticles:influence of radiation dose on structure and magnetic properties[J]. Plos One, 2014, 9(3):e90055.
|
[29] |
DVORANOVÁ D, BARBIERIKOVÁ Z, BREZOVÁ V. Radical intermediates in photoinduced reactions on TiO2 (an EPR spin trapping study)[J]. Molecules, 2014, 19(11):17279-17304.
|
[30] |
GOSWAMI M, CHIRILA A, REBREYEND C, et al. EPR spectroscopy as a tool in homogeneous catalysis research[J]. Topics in Catalysis, 2015, 58(12/13):719-750.
|