CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 487-495.DOI: 10.11949/j.issn.0438-1157.20181220
• Process system engineering • Previous Articles Next Articles
Received:
2018-10-17
Revised:
2018-12-16
Online:
2019-02-05
Published:
2019-02-05
Contact:
Tiefeng WANG
通讯作者:
王铁峰
作者简介:
<named-content content-type="corresp-name">张华海</named-content>(1995—),男,博士研究生,<email>950826zhh@sina.com</email>|王铁峰(1976—),男,博士,教授,<email>wangtf@tsinghua.edu.cn</email>
基金资助:
CLC Number:
Huahai ZHANG, Tiefeng WANG. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column[J]. CIESC Journal, 2019, 70(2): 487-495.
张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70(2): 487-495.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181220
模型 | 主要方程和关联式 |
---|---|
质量守恒方程 | |
动量守恒方程 | |
液相k-ε模型 | |
k方程 | |
ε方程 | |
湍动能产生项 液相湍动黏度 | |
湍能修正 | |
气相湍动黏度 | |
相间作用力 | |
曳力 | |
虚拟质量力 | |
横向升力 | |
湍动扩散力 | |
壁面润滑力 |
Table 1 Governing equations of two-fluid model
模型 | 主要方程和关联式 |
---|---|
质量守恒方程 | |
动量守恒方程 | |
液相k-ε模型 | |
k方程 | |
ε方程 | |
湍动能产生项 液相湍动黏度 | |
湍能修正 | |
气相湍动黏度 | |
相间作用力 | |
曳力 | |
虚拟质量力 | |
横向升力 | |
湍动扩散力 | |
壁面润滑力 |
模型 | 主要方程和关联式 |
---|---|
由湍流涡引起的破碎 | |
破碎速率 | |
子气泡大小分布 | |
补充方程 | |
由大气泡不稳定引起的破碎 | |
破碎速率 | |
子气泡大小分布 | |
湍流涡引起的聚并速率:ct=?tPt | |
碰撞频率 | |
聚并效率 | |
不同上升速度引起的聚并:cu=?uPu | |
碰撞频率 | |
聚并效率 | |
大气泡尾涡引起的聚并:cw=?wPw | |
碰撞频率 | |
聚并效率 |
Table 2 Models of bubble breakup and coalescence
模型 | 主要方程和关联式 |
---|---|
由湍流涡引起的破碎 | |
破碎速率 | |
子气泡大小分布 | |
补充方程 | |
由大气泡不稳定引起的破碎 | |
破碎速率 | |
子气泡大小分布 | |
湍流涡引起的聚并速率:ct=?tPt | |
碰撞频率 | |
聚并效率 | |
不同上升速度引起的聚并:cu=?uPu | |
碰撞频率 | |
聚并效率 | |
大气泡尾涡引起的聚并:cw=?wPw | |
碰撞频率 | |
聚并效率 |
液体 | 密度/(kg/m3) | 黏度/(Pa·s) | 表面张力/(mN/m) |
---|---|---|---|
水[7,11,25,26] | 1000 | 0.001 | 72.5 |
葡萄糖A[27,28] | 1340 | 0.17 | 76.0 |
葡萄糖B[27] | 1380 | 0.55 | 76.0 |
甲苯[29] | 866 | 0.00058 | 28.5 |
Table 3 Properties of different liquids
液体 | 密度/(kg/m3) | 黏度/(Pa·s) | 表面张力/(mN/m) |
---|---|---|---|
水[7,11,25,26] | 1000 | 0.001 | 72.5 |
葡萄糖A[27,28] | 1340 | 0.17 | 76.0 |
葡萄糖B[27] | 1380 | 0.55 | 76.0 |
甲苯[29] | 866 | 0.00058 | 28.5 |
vi,vk | ——气泡体积,m3 |
---|---|
αg | ——鼓泡床内气含率 |
β(v,v′) | ——子气泡分布 |
δj,k | ——狄拉克函数 |
ε | ——湍流耗散速率,m2/s3 |
——分别为气泡颈部流动收缩和扩张系数 | |
λ | ——湍流涡尺寸,m |
λmin | ——破碎最小湍流涡尺寸,m |
μ | ——液体黏度,Pa·s |
ρg,ρl | ——分别为气体和液体密度,kg/m3 |
σ | ——液体表面张力,mN/m |
vi,vk | ——气泡体积,m3 |
---|---|
αg | ——鼓泡床内气含率 |
β(v,v′) | ——子气泡分布 |
δj,k | ——狄拉克函数 |
ε | ——湍流耗散速率,m2/s3 |
——分别为气泡颈部流动收缩和扩张系数 | |
λ | ——湍流涡尺寸,m |
λmin | ——破碎最小湍流涡尺寸,m |
μ | ——液体黏度,Pa·s |
ρg,ρl | ——分别为气体和液体密度,kg/m3 |
σ | ——液体表面张力,mN/m |
1 | AnastasiouA D, PassosA D, MouzaA A. Bubble columns with fine pore sparger and non-Newtonian liquid phase: prediction of gas holdup[J]. Chemical Engineering Science, 2013, 98(19): 331-338. |
2 | WangT F, WangJ F, JinY. Slurry reactors for gas-to-liquid processes: a review[J]. Industrial & Engineering Chemistry Research, 2007, 46(18): 5824-5847. |
3 | JordanU, SchumpeA. The gas density effect on mass transfer in bubble columns with organic liquids[J]. Chemical Engineering Science, 2001, 56(21/22): 6267-6272. |
4 | BashaO M, AehabiagueL, Abdel-wahabA, et al. Fischer-Tropsch synthesis in slurry bubble column reactors: experimental investigations and modeling—a review[J]. International Journal of Chemical Reactor Engineering, 2015, 13(3): 201-288. |
5 | BesagniG, GallazziniL, InzoliF. Effect of gas sparger design on bubble column hydrodynamics using pure and binary liquid phases[J]. Chemical Engineering Science, 2018, 176(2): 116-126. |
6 | BesagniG, InzoliF, De GuidoG, et al. Gas holdup and flow regime transition in spider-sparger bubble column: effect of liquid phase properties[J]. Journal of Physics: Conference Series. IOP Publishing, 2017, 796(1): 012041. |
7 | WilkinsonP M, DierendonckL L. Pressure and gas density effects on bubble break-up and gas hold-up in bubble columns[J]. Chemical Engineering Science, 1990, 45(8): 2309-2315. |
8 | GemelloL, PlaisC, AugierF, et al. Hydrodynamics and bubble size in bubble columns: effects of contaminants and spargers[J]. Chemical Engineering Science, 2018, 184(20): 93-102. |
9 | JoshiJ B, RanadeV V. Computational fluid dynamics for designing process equipment: expectations, current status, and path forward[J]. Industrial & Engineering Chemistry Research, 2003, 42(6): 1115-1128. |
10 | WangT F, WangJ F, JinY. A CFD-PBM coupled model for gas-liquid flows[J]. AIChE Journal, 2006, 52(1): 125-140. |
11 | DegaleesanS, DudukovicM, PanY. Experimental study of gas‐induced liquid‐flow structures in bubble columns[J]. AIChE Journal, 2001, 47(9): 1913-1931. |
12 | LinT J, TsuchiyaK, FanL S. Bubble flow characteristics in bubble columns at elevated pressure and temperature[J]. AIChE Journal, 1998, 44(3): 545-560. |
13 | ChaumatH, BilletA M, DelmasH. Hydrodynamics and mass transfer in bubble column: Influence of liquid phase surface tension[J]. Chemical Engineering Science, 2007, 62(24): 7378-7390. |
14 | WilkinsonP M, van SchaykA, SpronkenJ P M, et al. The influence of gas density and liquid properties on bubble breakup[J]. Chemical Engineering Science, 1993, 48(7): 1213-1226. |
15 | KrishnaR, van BatenJ M. Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime[J]. Chemical Engineering Science, 2001, 56(21/22): 6249-6258. |
16 | SarhanA R, NaserJ, BrooksG. CFD modeling of bubble column: influence of physico-chemical properties of the gas/liquid phases properties on bubble formation[J]. Separation and Purification Technology, 2018, 201(7): 130-138. |
17 | XingC T, WangT F, WangJ F. Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column[J]. Chemical Engineering Science, 2013, 95(24): 313-322. |
18 | GuoK Y, WangT F, LiuY F, et al. CFD-PBM simulations of a bubble column with different liquid properties[J]. Chemical Engineering Journal, 2017, 329(1): 116-127. |
19 | XingC T, WangT F, GuoK Y, et al. A unified theoretical model for breakup of bubbles and droplets in turbulent flows[J]. AIChE Journal, 2015, 61(4): 1391-1403. |
20 | AnderssonR, AnderssonB. On the breakup of fluid particles in turbulent flows[J]. AIChE Journal, 2006, 52(6): 2020-2030. |
21 | RaveletF, ColinC, RissoF. On the dynamics and breakup of a bubble rising in a turbulent flow[J]. Physics of Fluids, 2011, 23(10): 103301. |
22 | YangG Y, GuoK Y, WangT F. Numerical simulation of the bubble column at elevated pressure with a CFD-PBM coupled model[J]. Chemical Engineering Science, 2017, 170(1): 251-262. |
23 | de BertodanoM L, LaheyR T, JonesO C. Development of a k-ε model for bubbly two-phase flow[J]. Journal of Fluids Engineering, 1994, 116(1): 128-134. |
24 | LiaoY, LucasD. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15): 3389-3406. |
25 | HashemiS, MacchiA, ServioP. Gas-liquid mass transfer in a slurry bubble column operated at gas hydrate forming conditions[J]. Chemical Engineering Science, 2009, 64(16): 3709-3716. |
26 | RudkevitchD, MacchiA. Hydrodynamics of a high pressure three‐phase fluidized bed subject to foaming[J]. The Canadian Journal of Chemical Engineering, 2008, 86(3): 293-301. |
27 | UrseanuM I, GuitR P M, StankiewiczA, et al. Influence of operating pressure on the gas hold-up in bubble columns for high viscous media[J]. Chemical Engineering Science, 2003, 58(3/4/5/6): 697-704. |
28 | EsmaeiliA, FaragS, GuyC, et al. Effect of elevated pressure on the hydrodynamic aspects of a pilot-scale bubble column reactor operating with non-Newtonian liquids[J]. Chemical Engineering Journal, 2016, 288(15): 377-389. |
29 | GrundG, SchumpeA, DeckwerW D. Gas-liquid mass transfer in a bubble column with organic liquids[J]. Chemical Engineering Science, 1992, 47(13/14): 3509-3516. |
30 | WangT F, WangJ F, JinY. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow[J]. Chemical Engineering Science, 2003, 58(20): 4629-4637. |
31 | SolsvikJ, JakobsenH A. A review of the statistical turbulence theory required extending the population balance closure models to the entire spectrum of turbulence[J]. AIChE Journal, 2016, 62(5): 1795-1820. |
32 | GuoK Y, WangT F, LiuY F, et al. CFD-PBM simulations of a bubble column with different liquid properties[J]. Chemical Engineering Journal, 2017, 329(1): 116-127. |
[1] | Peixu ZHOU, Yalun LI, Gongran YE, Yuan ZHUANG, Xilei WU, Zhikai GUO, Xiaohong HAN. Influence of physical properties of working fluids on leakage and diffusion characteristics of refrigerant in limited space [J]. CIESC Journal, 2023, 74(2): 953-967. |
[2] | Yanfang YU, Huanchen LIU, Huibo MENG, Litu LIU, Yu LI, Jianhua WU. Experimental investigation of turbulent dispersion and hydrodynamic behavior of bubble in Lightnin static mixer [J]. CIESC Journal, 2022, 73(8): 3565-3575. |
[3] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
[4] | Wenlong ZHANG,Shanglei NING,Haibo JIN,Lei MA,Guangxiang HE,Suohe YANG,Xiaoyan GUO,Rongyue ZHANG. Numerical simulation of hydrodynamic parameters with air-acetic acid system using CFD-PBM coupled model [J]. CIESC Journal, 2022, 73(6): 2589-2602. |
[5] | Weibin SHI, Shanshan LONG, Xiaogang YANG, Xinyue CAI. Bubble breakage, turbulence dispersion and mass transfer model considering the joint effects of bubble-induced turbulence and shear turbulence [J]. CIESC Journal, 2022, 73(6): 2573-2588. |
[6] | JIANG Jiatong, HU Bin, WANG Ruzhu, LIU Hua, ZHANG Zhiping, LI Hongbo. Dynamic simulation of horizontal condenser of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2021, 72(S1): 98-105. |
[7] | Wenlong ZHANG, Yan HOU, Haibo JIN, Lei MA, Guangxiang HE, Suohe YANG, Xiaoyan GUO, Rongyue ZHANG. Numerical simulation of air-water two-phase flow under elevated pressures and temperatures using CFD-PBM coupled model [J]. CIESC Journal, 2021, 72(9): 4594-4606. |
[8] | Yumeng ZHAO, Yifei WANG, Xin PENG, Zongyao WEI, Guangsuo YU, Fuchen WANG. Study on liquid flow structure in vertical annular space of scrubbing cooling chamber [J]. CIESC Journal, 2021, 72(8): 4039-4046. |
[9] | Song GAO,Yanyan XU,Jixiang LI,Shuang YE,Weiguang HUANG. Simulation study of microbubbles' break-up and coalescence in centrifugal pump based on TFM-PBM coupling model [J]. CIESC Journal, 2021, 72(10): 5082-5093. |
[10] | Xiaolan WEI, Pei XIE, Xuechuan ZHANG, Weilong WANG, Jianfeng LU, Jing DING. Research on preparation and thermodynamic properties of chloride molten salt materials [J]. CIESC Journal, 2020, 71(5): 2423-2431. |
[11] | Yupeng WANG, Junwei LIANG, Xianglong LUO, Yifan LI, Jianyong CHEN, Ying CHEN. Novel prediction method of process and system performance for organic Rankine cycle based on neural network [J]. CIESC Journal, 2019, 70(9): 3256-3266. |
[12] | Puyue JIA, Weidong WU, Yicong WANG, Bing ZHANG. Preparation and thermophysical property optimization of a new composite phase change material for cold storage [J]. CIESC Journal, 2019, 70(7): 2758-2765. |
[13] |
Yongsheng REN, Jing CAO, Bingjie YU.
Solid-liquid equilibria of quaternary system Na +// |
[14] | Yingjie LIU, Jesse ZHU. Flow behaviors in bubble-driven liquid-solid fluidized-bed adopting binary particles [J]. CIESC Journal, 2019, 70(1): 91-98. |
[15] | SONG Weilong, LU Yuanwei, WU Yuting, MA Chongfang. Effect of SiO2 nanoparticles on thermal properties of low melting point eutectic mixed nitrate salt [J]. CIESC Journal, 2018, 69(9): 4114-4120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||