CIESC Journal ›› 2018, Vol. 69 ›› Issue (9): 4114-4120.DOI: 10.11949/j.issn.0438-1157.20180146
Previous Articles Next Articles
SONG Weilong, LU Yuanwei, WU Yuting, MA Chongfang
Received:
2018-02-01
Revised:
2018-06-19
Online:
2018-09-05
Published:
2018-09-05
Supported by:
supported by the National Natural Science Foundation of China(51576006) and the National Key Research and Development Program of China(2017YFB0903603).
宋维龙, 鹿院卫, 吴玉庭, 马重芳
通讯作者:
鹿院卫
基金资助:
国家自然科学基金项目(51576006);国家重点研发计划项目(2017YFB0903603)。
CLC Number:
SONG Weilong, LU Yuanwei, WU Yuting, MA Chongfang. Effect of SiO2 nanoparticles on thermal properties of low melting point eutectic mixed nitrate salt[J]. CIESC Journal, 2018, 69(9): 4114-4120.
宋维龙, 鹿院卫, 吴玉庭, 马重芳. 纳米SiO2粒子对低熔点混合硝酸盐热物性影响[J]. 化工学报, 2018, 69(9): 4114-4120.
[1] | HERRMANN U, KELLY B, PRICE H. Two-tank molten salt storage for parabolic trough solar power plants[J]. Energy, 2004, 29(5/6):883-893. |
[2] | PRICE H, LUPFERT E, KEARNEY D, et al. Advances in parabolic trough solar power technology[J]. Journal of Solar Energy Engineering, 2002, 124(2):109-125. |
[3] | BROWN D R, LAMARCHE J L. SPANNER G E. Chemical energy storage system for SEGS solar thermal power plant[J]. Journal of Solar Energy Engineering-Transaction of the ASME, 1992, 92:212-218. |
[4] | 吴玉庭, 任楠, 马重芳. 熔融盐显热蓄热技术的应用与研究进展[J]. 储能科学与技术, 2013, 2(6):589-591. WU Y T, REN N, MA C F. Research and application of molten salts for sensible heat storage[J]. Energy Storage Science and Technology, 2013, 2(6):589-591. |
[5] | JO B, BANERJEE D. Thermal properties measurement of binary carbonate salt mixtures for concentrating solar power plants[J]. Journal of Renewable & Sustainable Energy, 2015, 7(3):121-137. |
[6] | SHIN D, BANERJEE D. Enhanced specific heat of silica nanofluid[J]. Journal of Heat Transfer, 2011, 133(2):216-226. |
[7] | TIZNOBAIK H, SHIN D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. International Journal of Heat & Mass Transfer, 2013, 57(2):542-548. |
[8] | SHIN D, BANERJEE D. Enhanced thermal properties of SiO2, nanocomposite for solar thermal energy storage applications[J]. International Journal of Heat & Mass Transfer, 2015, 84:898-902. |
[9] | MING X H, PAN C. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity[J]. International Journal of Heat & Mass Transfer, 2014, 70(3):174-184. |
[10] | DUDDA B, SHIN D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69(7):37-42. |
[11] | TIZNOBAIK H, SHIN D. Effect of formation of "long range" secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity[J]. International Journal of Heat & Mass Transfer, 2015, 91:342-346. |
[12] | SHIN D, BANERJEE D. Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic (work in progress)[J]. International Journal of Structural Changes in Solids, 2010, 2:25-31. |
[13] | SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat & Mass Transfer, 2011, 54(5/6):1064-1070. |
[14] | SEO J, SHIN. D. Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3-NaNO3-KNO3) salt eutectic for thermal energy storage[J]. Applied Thermal Energy, 2016, 102:144-148. |
[15] | LU M C, HUANG C H. Specific heat capacity of molten salt-based alumina nanofluid[J]. Nanoscale Research Letter, 2013, 8(1):292. |
[16] | ANDREU-CABEDO P, MONDARAGON R, HERNANDEZ L, et al. Increment of specific heat capacity of solar salt with SiO2 nanoparticles[J]. Nanoscale Research Letter, 2014, 9(1):582-593. |
[17] | CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J]. Nanoscale Research Letter, 2013, 8(1):448-457. |
[18] | DEVARADJANE R, SHIN D. Enhanced heat capacity of molten salt nano-materials for concentrated solar power application[C]//ASME 2012 International Mechanical Engineering Congress and Exposition. Houston:ASME, 2012:269-273. |
[19] | CHIERUZZI M, MILIOZZI A, CRESCENZI T, et al. A new phase change material based on potassium nitrate with silica and alumina nanoparticles for thermal energy storage[J]. Nanoscale Research Letters, 2015, 10(1):273. |
[20] | LIU S, WU D, LIU J, et al. Development of a novel molten-salt filled with nanoparticles for concentration solar plants[C]//2nd IET Renewable Power Generation Conference. Beijing:IET, 2014:1-4. |
[21] | JO B, BANERJEE D. Effect of dispersion homogeneity on specific heat capacity enhancement of molten salt nanomaterials using carbon nanotubes[J]. Journal of Solar Energy Engineering, 2015, 137(1):11-20. |
[22] | JO B, BANERJEE D. Enhanced specific heat capacity of molten salt-based nanomaterials:effects of nanoparticle dispersion and solvent material[J]. Acta Materialia, 2014, 75(9):80-91. |
[23] | SHIN D, BANERJEE D. Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic[J]. International Journal of Heat & Mass Transfer, 2014, 74(5):210-214. |
[24] | JO B, BANERJEE D. Effect of solvent on specific heat capacity enhancement of binary molten salt-based carbon nanotube nanomaterials for thermal energy storage[J]. International Journal of Thermal Sciences, 2015, 98:219-227. |
[25] | RIAZI H, MESGARI S, AHMED N A, et al. The effect of nanoparticle morphology on the specific heat of nanosalts[J]. International Journal of Heat & Mass Transfer, 2016, 94:254-261. |
[26] | LASFARGUES M, GENG Q, CAO H, et al. Mechanical dispersion of nanoparticles and Its effect on the specific heat capacity of impure binary nitrate salt mixtures[J]. Nanomaterials, 2015, 5(3):1136-1146. |
[27] | CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials & Solar Cells, 2017, 167:60-69. |
[28] | 张璐迪. 纳米SiO2-熔盐复合储热材料的制备与热物性实验研究[D]. 北京:北京工业大学, 2016. ZHANG L D. Experimental study on preparation and thermal properties of composite nano-SiO2 molten salt using in thermal energy storage[D]. Beijing:Beijing University of Technology, 2016. |
[29] | ZHANG L D, CHEN X, WU Y T, et al. Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application[J]. Solar Energy Materials & Solar Cells, 2016, 157:808-813. |
[30] | REN N, WU Y T, MA C F, et al. Preparation and thermal properties of quaternary mixed nitrate with low melting point[J]. Solar Energy Materials & Solar Cells, 2014, 127(4):6-13. |
[31] | 张立德, 牟季美. 纳米材料和纳米结构[M]. 北京:科学出版社, 2001:444-445. ZHANG L D, MOU J M. Nano-materials and Nano-structure[M]. Beijing:Science Press, 2001:444-445. |
[1] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[2] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[3] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[4] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[5] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[6] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[7] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[8] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[9] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[10] | Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827. |
[11] | Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres [J]. CIESC Journal, 2022, 73(8): 3636-3646. |
[12] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[13] | Ke XU, Guoqiang SHI, Dongfeng XUE. Inorganic hybrid perovskite cluster materials: luminescence properties of mesoscale perovskite materials [J]. CIESC Journal, 2022, 73(6): 2748-2756. |
[14] | Tao ZHENG, Haiyan LIU, Rui ZHANG, Xianghai MENG, Yuanyuan YUE, Zhichang LIU. Research progress on mesoscale activation of natural aluminosilicate minerals based on green synthesis of molecular sieve [J]. CIESC Journal, 2022, 73(6): 2334-2351. |
[15] | Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 216
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 314
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||