CIESC Journal ›› 2019, Vol. 70 ›› Issue (9): 3256-3266.DOI: 10.11949/0438-1157.20181521
• Thermodynamics • Previous Articles Next Articles
Yupeng WANG(),Junwei LIANG,Xianglong LUO(),Yifan LI,Jianyong CHEN,Ying CHEN
Received:
2018-12-27
Revised:
2019-04-23
Online:
2019-09-05
Published:
2019-09-05
Contact:
Xianglong LUO
通讯作者:
罗向龙
作者简介:
王羽鹏(1993—),男,硕士研究生,基金资助:
CLC Number:
Yupeng WANG, Junwei LIANG, Xianglong LUO, Yifan LI, Jianyong CHEN, Ying CHEN. Novel prediction method of process and system performance for organic Rankine cycle based on neural network[J]. CIESC Journal, 2019, 70(9): 3256-3266.
王羽鹏, 梁俊伟, 罗向龙, 李逸帆, 陈健勇, 陈颖. 基于神经网络的有机朗肯循环过程及循环性能计算方法[J]. 化工学报, 2019, 70(9): 3256-3266.
Add to citation manager EndNote|Ris|BibTeX
基团分类 | |||||
---|---|---|---|---|---|
—CH3 | —CH2— | >CH— | >C< | ═CH2 | ═CH— |
—F | —Cl | —O— | —I | ═C< |
Table 1 Functional groups
基团分类 | |||||
---|---|---|---|---|---|
—CH3 | —CH2— | >CH— | >C< | ═CH2 | ═CH— |
—F | —Cl | —O— | —I | ═C< |
工质 | ||||||||
---|---|---|---|---|---|---|---|---|
R1234yf | R134a | R11 | R113 | R114 | R115 | R123 | R125 | R143a |
R152a | R218 | R227ea | R236ea | R236fa | R245ca | R245fa | propane | R32 |
butane | isobutane | pentane | ipentane | R1233zd | R1234ze | R141b | R142b | Re143a |
R161 | R21 | dimethylether | R124 | R1216 | Re245cb2 | Re245fa2 | propylene | C4F10 |
R12 | Re347mcc | CF3I | isobutene | C5F12 | neopentne | hexane | isohxane | heptane |
acetone | R365mfc | cis-butene | trans-butene | dimethyl carbonate | diethyl ether |
Table 2 51 training working fluids for neuron network
工质 | ||||||||
---|---|---|---|---|---|---|---|---|
R1234yf | R134a | R11 | R113 | R114 | R115 | R123 | R125 | R143a |
R152a | R218 | R227ea | R236ea | R236fa | R245ca | R245fa | propane | R32 |
butane | isobutane | pentane | ipentane | R1233zd | R1234ze | R141b | R142b | Re143a |
R161 | R21 | dimethylether | R124 | R1216 | Re245cb2 | Re245fa2 | propylene | C4F10 |
R12 | Re347mcc | CF3I | isobutene | C5F12 | neopentne | hexane | isohxane | heptane |
acetone | R365mfc | cis-butene | trans-butene | dimethyl carbonate | diethyl ether |
基团 | —CH3 | —CH2— | >CH— | >C< | ═C< | ═CH— | ═CH2 | —F | —Cl | —I | —O— |
---|---|---|---|---|---|---|---|---|---|---|---|
出现次数 | 47 | 28 | 14 | 50 | 6 | 9 | 3 | 147 | 20 | 1 | 10 |
Table 3 Total number of groups using for training neuron network
基团 | —CH3 | —CH2— | >CH— | >C< | ═C< | ═CH— | ═CH2 | —F | —Cl | —I | —O— |
---|---|---|---|---|---|---|---|---|---|---|---|
出现次数 | 47 | 28 | 14 | 50 | 6 | 9 | 3 | 147 | 20 | 1 | 10 |
ANN-GCM相关参数 | W p/kW | W t/kW | Q evap/kJ | s p/(J/(kg·K)) | s evap/(J/(kg·K)) | s t/(J/(kg·K)) | |
---|---|---|---|---|---|---|---|
隐层神经元个数 | 24 | 20 | |||||
隐层传递函数 | tansig | logsig | |||||
训练算法 | L-M | B-R | |||||
R 2 | 训练集 | 0.9987 | 0.9999 | 0.9999 | 0.9981 | 0.9998 | 0.9999 |
验证集 | 0.9979 | 0.9994 | 0.9999 | — | — | — | |
测试集 | 0.9981 | 0.9999 | 0.9999 | 0.9950 | 0.9641 | 0.9999 | |
总集 | 0.9983 | 0.9999 | 0.9999 | 0.9976 | 0.9941 | 0.9999 | |
AAD/% | 训练集 | 5.8428 | 1.6693 | 0.4365 | 4.8560 | 0.3800 | 0.8130 |
验证集 | 1.3102 | 0.6451 | 0.3238 | — | — | — | |
测试集 | 2.0479 | 0.8767 | 0.2770 | 5.9408 | 1.8656 | 0.9509 | |
总集 | 4.5937 | 1.3968 | 0.3957 | 5.0187 | 0.6029 | 0.8336 | |
Bias/% | 训练集 | -2.1722 | -0.0856 | -0.0081 | -0.0102 | -0.0003 | -0.0003 |
验证集 | 0.5396 | 0.2184 | 0.0690 | — | — | — | |
测试集 | 2.0479 | 0.8767 | 0.2770 | -0.0106 | 0.0136 | -0.0007 | |
总集 | -1.5178 | -0.0448 | -0.0006 | -0.0103 | 0.0018 | -0.0004 | |
RMS | 训练集 | 0.0023 | 0.4738 | 2.6511 | 8.0677 | 66.8208 | 8.0677 |
验证集 | 0.0004 | 0.1299 | 2.1518 | — | — | — | |
测试集 | 0.0019 | 0.4949 | 1.8710 | 38.1364 | 114.3525 | 84.2851 | |
总集 | 0.0445 | 0.6522 | 1.5682 | 25.9051 | 44.9142 | 69.7206 |
Table 4 Parameters of using ANN-GCM for predicting heat transfer in ORC process
ANN-GCM相关参数 | W p/kW | W t/kW | Q evap/kJ | s p/(J/(kg·K)) | s evap/(J/(kg·K)) | s t/(J/(kg·K)) | |
---|---|---|---|---|---|---|---|
隐层神经元个数 | 24 | 20 | |||||
隐层传递函数 | tansig | logsig | |||||
训练算法 | L-M | B-R | |||||
R 2 | 训练集 | 0.9987 | 0.9999 | 0.9999 | 0.9981 | 0.9998 | 0.9999 |
验证集 | 0.9979 | 0.9994 | 0.9999 | — | — | — | |
测试集 | 0.9981 | 0.9999 | 0.9999 | 0.9950 | 0.9641 | 0.9999 | |
总集 | 0.9983 | 0.9999 | 0.9999 | 0.9976 | 0.9941 | 0.9999 | |
AAD/% | 训练集 | 5.8428 | 1.6693 | 0.4365 | 4.8560 | 0.3800 | 0.8130 |
验证集 | 1.3102 | 0.6451 | 0.3238 | — | — | — | |
测试集 | 2.0479 | 0.8767 | 0.2770 | 5.9408 | 1.8656 | 0.9509 | |
总集 | 4.5937 | 1.3968 | 0.3957 | 5.0187 | 0.6029 | 0.8336 | |
Bias/% | 训练集 | -2.1722 | -0.0856 | -0.0081 | -0.0102 | -0.0003 | -0.0003 |
验证集 | 0.5396 | 0.2184 | 0.0690 | — | — | — | |
测试集 | 2.0479 | 0.8767 | 0.2770 | -0.0106 | 0.0136 | -0.0007 | |
总集 | -1.5178 | -0.0448 | -0.0006 | -0.0103 | 0.0018 | -0.0004 | |
RMS | 训练集 | 0.0023 | 0.4738 | 2.6511 | 8.0677 | 66.8208 | 8.0677 |
验证集 | 0.0004 | 0.1299 | 2.1518 | — | — | — | |
测试集 | 0.0019 | 0.4949 | 1.8710 | 38.1364 | 114.3525 | 84.2851 | |
总集 | 0.0445 | 0.6522 | 1.5682 | 25.9051 | 44.9142 | 69.7206 |
工质 | CAS | 分子式 | 相对分子质量 | 工质 | CAS | 分子式 | 相对分子质量 | |
---|---|---|---|---|---|---|---|---|
R123 | 306-83-2 | CF3CHCl2 | 152.93 | R290 | 74-98-6 | CH3CH2CH3 | 44.096 | |
R125 | 354-33-6 | CHF2CF3 | 120.02 | R600 | 106-97-8 | CH3CH2CH2CH3 | 58.122 | |
R134a | 811-97-2 | CF3CH2F | 102.03 | R600a | 75-28-5 | CH(CH3)2CH3 | 58.122 | |
R143a | 420-46-2 | CH3CF3 | 84.041 | R601 | 709-66-0 | CH3CH2CH2CH2CH3 | 72.149 | |
R152a | 75-37-6 | CH3CHF2 | 66.051 | R601a | 78-78-4 | (CH3)2CHCH2CH3 | 72.149 | |
R218 | 76-19-7 | CF3CF2CF3 | 188.02 | n-C6H14 | 110-54-3 | CH3(CH2)4CH3 | 86.175 | |
R227ea | 431-89-0 | CF3CHFCF3 | 170.03 | C5F12 | 678-26-2 | CF3CF2CF2CF2CF3 | 288.03 | |
R236ea | 431-63-0 | CF3CHFCHF2 | 152.04 | R1233zd | 102687-65-0 | CHCl═CHCF3 | 130.5 | |
R236fa | 690-39-1 | CF3CH2CF3 | 152.04 | R1234yf | 754-12-1 | CH2═CFCF3 | 114.04 | |
R245ca | 679-86-7 | CH2FCF2CHF2 | 134.05 | R1234ze | 29118-24-9 | CF3CH═CHF | 114.04 | |
R245fa | 460-73-1 | CF3CH2CHF2 | 134.05 |
Table 5 21 working fluids used to validate model
工质 | CAS | 分子式 | 相对分子质量 | 工质 | CAS | 分子式 | 相对分子质量 | |
---|---|---|---|---|---|---|---|---|
R123 | 306-83-2 | CF3CHCl2 | 152.93 | R290 | 74-98-6 | CH3CH2CH3 | 44.096 | |
R125 | 354-33-6 | CHF2CF3 | 120.02 | R600 | 106-97-8 | CH3CH2CH2CH3 | 58.122 | |
R134a | 811-97-2 | CF3CH2F | 102.03 | R600a | 75-28-5 | CH(CH3)2CH3 | 58.122 | |
R143a | 420-46-2 | CH3CF3 | 84.041 | R601 | 709-66-0 | CH3CH2CH2CH2CH3 | 72.149 | |
R152a | 75-37-6 | CH3CHF2 | 66.051 | R601a | 78-78-4 | (CH3)2CHCH2CH3 | 72.149 | |
R218 | 76-19-7 | CF3CF2CF3 | 188.02 | n-C6H14 | 110-54-3 | CH3(CH2)4CH3 | 86.175 | |
R227ea | 431-89-0 | CF3CHFCF3 | 170.03 | C5F12 | 678-26-2 | CF3CF2CF2CF2CF3 | 288.03 | |
R236ea | 431-63-0 | CF3CHFCHF2 | 152.04 | R1233zd | 102687-65-0 | CHCl═CHCF3 | 130.5 | |
R236fa | 690-39-1 | CF3CH2CF3 | 152.04 | R1234yf | 754-12-1 | CH2═CFCF3 | 114.04 | |
R245ca | 679-86-7 | CH2FCF2CHF2 | 134.05 | R1234ze | 29118-24-9 | CF3CH═CHF | 114.04 | |
R245fa | 460-73-1 | CF3CH2CHF2 | 134.05 |
方法 | AAD/% | |||||
---|---|---|---|---|---|---|
Q evap | Q con | W P | W t | W net | η th | |
本文方法 | 0.26 | 0.31 | 1.72 | 0.97 | 1.01 | 1.02 |
Su等[ | 5.05 | 5.08 | 10.7 | 7.25 | 8.28 | 4.89 |
Joback等[ | 10.95 | 10.98 | 52.69 | 10.26 | 13 | 5.42 |
Table 6 AADs of process parameters using different methods
方法 | AAD/% | |||||
---|---|---|---|---|---|---|
Q evap | Q con | W P | W t | W net | η th | |
本文方法 | 0.26 | 0.31 | 1.72 | 0.97 | 1.01 | 1.02 |
Su等[ | 5.05 | 5.08 | 10.7 | 7.25 | 8.28 | 4.89 |
Joback等[ | 10.95 | 10.98 | 52.69 | 10.26 | 13 | 5.42 |
工质 | EATII | T evap/K | T con/K | T s/K | Error/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
W p | W t | Q evap | Q con | W net | | |||||
R236ea | 35.248 | 360 | 298.15 | 5 | 1.18 | 0.27 | 0.04 | 0.01 | 0.25 | 0.21 |
R236fa | 36.5556 | 360 | 298.15 | 5 | 0.59 | 0.56 | 0.12 | 0.04 | 0.60 | 0.48 |
R245ca | 29.715 | 410 | 298.15 | 5 | 1.61 | 0.87 | 0.31 | 0.18 | 0.85 | 0.54 |
R245fa | 28.2336 | 410 | 298.15 | 5 | 0.08 | 0.72 | 0.26 | 0.14 | 0.75 | 0.49 |
Table 7 Errors of predicting isomers
工质 | EATII | T evap/K | T con/K | T s/K | Error/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
W p | W t | Q evap | Q con | W net | | |||||
R236ea | 35.248 | 360 | 298.15 | 5 | 1.18 | 0.27 | 0.04 | 0.01 | 0.25 | 0.21 |
R236fa | 36.5556 | 360 | 298.15 | 5 | 0.59 | 0.56 | 0.12 | 0.04 | 0.60 | 0.48 |
R245ca | 29.715 | 410 | 298.15 | 5 | 1.61 | 0.87 | 0.31 | 0.18 | 0.85 | 0.54 |
R245fa | 28.2336 | 410 | 298.15 | 5 | 0.08 | 0.72 | 0.26 | 0.14 | 0.75 | 0.49 |
1 | 宋建忠, 张小松, 李舒宏, 等 . 太阳能有机朗肯循环系统的实验特性[J]. 化工学报, 2014, 65(12): 4958-4964. |
Song J Z , Zhang X S , Li S H , et al . Experimental characteristics of solar organic Rankine cycle system[J]. CIESC Journal, 2014, 65(12): 4958-4964. | |
2 | 刘继芬, 王景甫, 马重芳, 等 . 中低温地热发电循环参数的优化[J]. 化工学报, 2011, 62(S1): 190-196. |
Liu J F , Wang J F , Ma C F , et al . Optimization of cycle parameters in low-medium temperature geothermal power generation[J]. CIESC Journal, 2011, 62(S1): 190-196. | |
3 | 杨凯, 张红光, 宋松松, 等 . 变工况下车用柴油机排气余热有机朗肯循环回收系统[J]. 化工学报, 2015, 66(3): 1097-1103. |
Yang K , Zhang H G , Song S S , et al . Waste heat organic Rankine cycle of vehicle diesel engine under variable working conditions[J]. CIESC Journal, 2015, 66(3): 1097-1103. | |
4 | 黄仁龙, 罗向龙, 梁志辉, 等 . 基于分液冷凝的R245fa/pentane混合工质朗肯循环多目标优化[J]. 化工学报, 2018, 69(5): 2040-2048. |
Huang R L , Luo X L , Liang Z H , et al . Multi-objective optimization of Rankine cycle using R245fa/pentane based on liquid-vapor separation[J]. CIESC Journal, 2018, 69(5): 2040-2048. | |
5 | 许俊俊, 罗向龙, 王永真, 等 . ORC工质选择的多级非结构性模糊决策分析[J]. 化工学报, 2015, 66(3): 1051-1058. |
Xu J J , Luo X L , Wang Y Z , et al . Optimum selection of ORC working fluid using multi-level fuzzy optimization and non-structural fuzzy decision[J]. CIESC Journal, 2015, 66(3): 1051-1058. | |
6 | Imran M , Usman M , Park B , et al . Multi-objective optimization of evaporator of organic Rankine cycle (ORC) for low temperature geothermal heat source[J]. Applied Thermal Engineering, 2015, 80: 1-9. |
7 | Györke G , Deiters U K , Groniewsky A , et al . Novel classification of pure working fluids for organic Rankine cycle[J]. Energy, 2018, 145: 288-300. |
8 | Bao J , Zhao L . A review of working fluid and expander selections for organic Rankine cycle[J]. Renewable and Sustainable Energy Reviews, 2013, 24: 325-342. |
9 | He C , Liu C , Zhou M , et al . A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources[J]. Energy, 2014, 68: 283-291. |
10 | Bricks J L , Kachkovskii A D , Slominskii Y L , et al . Molecular design of near infrared polymethine dyes: a review[J]. Dyes and Pigments, 2015, 121: 238-255. |
11 | Gholivand M B , Khodadadian M , Ahmadi F . Computer aided-molecular design and synthesis of a high selective molecularly imprinted polymer for solid-phase extraction of furosemide from human plasma[J]. Analytica Chimica Acta, 2010, 658(2): 225-232. |
12 | Struebing H , Ganase Z , Karamertzanis P G , et al . Computer-aided molecular design of solvents for accelerated reaction kinetics[J]. Nature Chemistry, 2013, 5(11): 952-957. |
13 | Papadopoulos A I , Stijepovic M , Linke P . On the systematic design and selection of optimal working fluids for organic Rankine cycles[J]. Applied Thermal Engineering, 2010, 30(6/7): 760-769. |
14 | Palma-Flores O , Flores-Tlacuahuac A , Canseco-Melchor G . Optimal molecular design of working fluids for sustainable low-temperature energy recovery[J]. Computers & Chemical Engineering, 2015, 72: 334-349. |
15 | Palma-Flores O , Flores-Tlacuahuac A , Canseco-Melchorb G . Simultaneous molecular and process design for waste heat recovery[J]. Energy, 2016, 99: 32-47. |
16 | White M T , Oyewunmi O A , Haslam A J , et al . Industrial waste-heat recovery through integrated computer-aided working-fluid and ORC system optimization using SAFT-γMie[J]. Energy Conversion and Management, 2017, 150: 851-869. |
17 | Joback K , Reid R . Estimation of pure-component properties from group-contributions[J]. Chemical Engineering Communications, 1987, 57(1/2/3/4/5/6): 233-243. |
18 | Constantinou L , Gani R . New group contribution method for estimating properties of pure compounds[J]. AIChE Journal, 1994, 40: 1697-1710. |
19 | Marrero-Morejón J , Pardillo-Fontdevila E . Estimation of pure compound properties using group-interaction contributions[J]. AIChE Journal, 1999, 45(3): 615-621. |
20 | Lazzús J A . ρ-T-P prediction for ionic liquids using neural networks[J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(2): 213-232. |
21 | 苏文, 赵力, 邓帅 . 基于基团拓扑的遗传神经网络工质临界温度预测[J]. 化工学报, 2016, 67(11): 4689-4695. |
Su W , Zhao L , Deng S . Prediction of refrigerant critical temperature with genetic neural network based on group topology[J]. CIESC Journal, 2016, 67(11): 4689-4695. | |
22 | Mondejar M E , Cignitti S , Abildskov J , et al . Prediction of properties of new halogenated olefins using two group contribution approaches[J]. Fluid Phase Equilibria, 2017, 433: 79-96. |
23 | Barbieri E S , Morini M , Pinelli M . Development of a model for the simulation of organic Rankine cycles based on group contribution techniques[C]// ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2011. |
24 | Su W , Zhao L , Deng S . Developing a performance evaluation model of organic Rankine cycle for working fluids based on the group contribution method[J]. Energy Conversion and Management, 2017, 132: 307-315. |
25 | Lemmon E W , Huber M L , Mclinden M O . NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP. 9.1[DB]. 2013. |
26 | Deng S , Su W , Zhao L . A neural network for predicting normal boiling point of pure refrigerants using molecular groups and a topological index[J]. International Journal of Refrigeration, 2016, 63: 63-71. |
27 | Taskinen J , Yliruusi J . Prediction of physicochemical properties based on neural network modelling[J]. Advanced Drug Delivery Reviews, 2003, 55(9): 1163-1183. |
28 | Moosavi M , Soltani N . Prediction of hydrocarbon densities using an artificial neural network-group contribution method up to high temperatures and pressures[J]. Thermochim Acta, 2013, 556: 89-96. |
29 | Moosavi M , Sedghamiz E , Abareshi M . Liquid density prediction of five different classes of refrigerant systems (HCFCs, HFCs, HFEs, PFAs and PFAAs) using the artificial neural network-group contribution method[J]. International Journal of Refrigeration, 2014, 48: 188-200. |
30 | Su W , Zhao L , Deng S . Group contribution methods in thermodynamic cycles: physical properties estimation of pure working fluids[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 984-1001. |
31 | Peng D Y , Robinson D B . A new two-constant equation of state[J]. Minerva Ginecologica, 1976, 12(11/12): 3069–3078. |
[1] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[2] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[3] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[4] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[5] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[6] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[7] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[8] | Yurong DANG, Chunlan MO, Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI. Comprehensive evaluation model combined with genetic algorithm for the study on the performance of ORC system with zeotropic mixture [J]. CIESC Journal, 2023, 74(5): 1884-1895. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[11] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[12] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
[13] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[14] | Jing YANG, Zhenkang LIN, Jun TANG, Cheng FAN, Kening SUN. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems [J]. CIESC Journal, 2022, 73(8): 3394-3405. |
[15] | Xinjie ZHOU, Jianlin WANG, Xingcong AI, Enguang SUI, Rutong WANG. IDPC-RVM based online prediction of quality variables for multimode batch processes [J]. CIESC Journal, 2022, 73(7): 3120-3130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||