CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 2423-2431.DOI: 10.11949/0438-1157.20191541
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xiaolan WEI1(),Pei XIE1,Xuechuan ZHANG1,Weilong WANG2,Jianfeng LU2,Jing DING2()
Received:
2019-12-19
Revised:
2020-03-09
Online:
2020-05-05
Published:
2020-05-05
Contact:
Jing DING
魏小兰1(),谢佩1,张雪钏1,王维龙2,陆建峰2,丁静2()
通讯作者:
丁静
作者简介:
魏小兰(1963—),女,教授, 基金资助:
CLC Number:
Xiaolan WEI, Pei XIE, Xuechuan ZHANG, Weilong WANG, Jianfeng LU, Jing DING. Research on preparation and thermodynamic properties of chloride molten salt materials[J]. CIESC Journal, 2020, 71(5): 2423-2431.
魏小兰, 谢佩, 张雪钏, 王维龙, 陆建峰, 丁静. 氯化物熔盐材料的制备及其热物理性质研究[J]. 化工学报, 2020, 71(5): 2423-2431.
Add to citation manager EndNote|Ris|BibTeX
样品 | NaCl/%(mol) | CaCl2/%(mol) | KCl/%(mol) | MgCl2/%(mol) | 低共熔点温度/℃ | 相变潜热/(J·g-1) |
---|---|---|---|---|---|---|
NaCl-CaCl2 | 49.03 | 50.97 | 499.2 | 152.6 | ||
NaCl-CaCl2-KCl | 41.72 | 52.16 | 6.12 | 503.8 | 178.2 | |
NaCl-CaCl2-MgCl2 | 45.10 | 26.30 | 28.60 | 431 | 241.9 | |
KCl-CaCl2-MgCl2 | 11.63 | 59.79 | 28.58 | 427.3 | 166.9 | |
KCl-NaCl-MgCl2 | 33.70 | 17.80 | 48.50 | 383.5 | 199.3 | |
KCl-NaCl-CaCl2-MgCl2 | 31.80 | 6.00 | 16.80 | 45.70 | 380.3 | 228 |
Table 1 Eutectic temperature and composition of six kinds of molten salt
样品 | NaCl/%(mol) | CaCl2/%(mol) | KCl/%(mol) | MgCl2/%(mol) | 低共熔点温度/℃ | 相变潜热/(J·g-1) |
---|---|---|---|---|---|---|
NaCl-CaCl2 | 49.03 | 50.97 | 499.2 | 152.6 | ||
NaCl-CaCl2-KCl | 41.72 | 52.16 | 6.12 | 503.8 | 178.2 | |
NaCl-CaCl2-MgCl2 | 45.10 | 26.30 | 28.60 | 431 | 241.9 | |
KCl-CaCl2-MgCl2 | 11.63 | 59.79 | 28.58 | 427.3 | 166.9 | |
KCl-NaCl-MgCl2 | 33.70 | 17.80 | 48.50 | 383.5 | 199.3 | |
KCl-NaCl-CaCl2-MgCl2 | 31.80 | 6.00 | 16.80 | 45.70 | 380.3 | 228 |
温度T/℃ | Na/Ca-Cl | Na/Ca/K-Cl | Na/Ca/Mg-Cl | K/Ca/Mg-Cl | Na/K/Mg-Cl | Na/K/Ca/Mg-Cl |
---|---|---|---|---|---|---|
420 | 1.044 | 1.061 | ||||
440 | 1.034 | 1.056 | ||||
460 | 1.028 | 1.032 | 1.046 | 1.059 | ||
480 | 1.040 | 1.049 | 1.059 | 1.062 | ||
500 | 1.045 | 1.068 | 1.071 | 1.066 | ||
550 | 0.758 | 0.865 | 1.045 | 1.108 | 1.097 | 1.076 |
600 | 0.870 | 0.887 | 1.053 | 1.121 | 1.137 | 1.090 |
650 | 0.923 | 0.971 | 1.059 | 1.116 | 1.176 | 1.105 |
平均比热容 | 0.850 | 0.908 | 1.045 | 1.082 | 1.083 | 1.072 |
Table 2 Experimental values of heat capacity of six kinds of molten salts in different temperatures/(J?g-1?K-1)
温度T/℃ | Na/Ca-Cl | Na/Ca/K-Cl | Na/Ca/Mg-Cl | K/Ca/Mg-Cl | Na/K/Mg-Cl | Na/K/Ca/Mg-Cl |
---|---|---|---|---|---|---|
420 | 1.044 | 1.061 | ||||
440 | 1.034 | 1.056 | ||||
460 | 1.028 | 1.032 | 1.046 | 1.059 | ||
480 | 1.040 | 1.049 | 1.059 | 1.062 | ||
500 | 1.045 | 1.068 | 1.071 | 1.066 | ||
550 | 0.758 | 0.865 | 1.045 | 1.108 | 1.097 | 1.076 |
600 | 0.870 | 0.887 | 1.053 | 1.121 | 1.137 | 1.090 |
650 | 0.923 | 0.971 | 1.059 | 1.116 | 1.176 | 1.105 |
平均比热容 | 0.850 | 0.908 | 1.045 | 1.082 | 1.083 | 1.072 |
样品 | ρ/(g·cm-3) | R2 |
---|---|---|
NaCl-CaCl2 | ρ=2.17-4.02×10-4T | 0.99351 |
NaCl-CaCl2-KCl | ρ=2.20-4.41×10-4T | 0.98246 |
NaCl-CaCl2-MgCl2 | ρ=2.22-5.03×10-4T | 0.99794 |
NaCl-KCl-MgCl2 | ρ=2.21-7.12×10-4T | 0.99408 |
KCl-CaCl2-MgCl2 | ρ=1.89-3.83×10-4T | 0.99466 |
KCl-NaCl-CaCl2-MgCl2 | ρ=2.22-4.87×10-4T | 0.98266 |
Table 3 Fitting formulas of densities of six kinds of molten salts as function of temperature
样品 | ρ/(g·cm-3) | R2 |
---|---|---|
NaCl-CaCl2 | ρ=2.17-4.02×10-4T | 0.99351 |
NaCl-CaCl2-KCl | ρ=2.20-4.41×10-4T | 0.98246 |
NaCl-CaCl2-MgCl2 | ρ=2.22-5.03×10-4T | 0.99794 |
NaCl-KCl-MgCl2 | ρ=2.21-7.12×10-4T | 0.99408 |
KCl-CaCl2-MgCl2 | ρ=1.89-3.83×10-4T | 0.99466 |
KCl-NaCl-CaCl2-MgCl2 | ρ=2.22-4.87×10-4T | 0.98266 |
样品 | μ/(mPa·s) | R2 |
---|---|---|
NaCl-CaCl2 | 0.99153 | |
NaCl-CaCl2-KCl | 0.99032 | |
NaCl-CaCl2-MgCl2 | 0.99347 | |
NaCl-KCl-MgCl2 | 0.97933 | |
KCl-CaCl2-MgCl2 | 0.99877 | |
KCl-NaCl-CaCl2-MgCl2 | 0.99146 |
Table 4 Fitting formulas of viscosities of six kinds of molten salts as function of temperature
样品 | μ/(mPa·s) | R2 |
---|---|---|
NaCl-CaCl2 | 0.99153 | |
NaCl-CaCl2-KCl | 0.99032 | |
NaCl-CaCl2-MgCl2 | 0.99347 | |
NaCl-KCl-MgCl2 | 0.97933 | |
KCl-CaCl2-MgCl2 | 0.99877 | |
KCl-NaCl-CaCl2-MgCl2 | 0.99146 |
样品 | cp/(J?g-1?K-1) | ρ/(g·cm-3) | Tm/K | Tlim/K | E/(J?cm-3) |
---|---|---|---|---|---|
NaCl-CaCl2 | 0.850 | 772.3 | 1073 | 460.0 | |
NaCl-CaCl2-KCl | 0.908 | 776.8 | 1123 | 559.9 | |
NaCl-CaCl2-MgCl2 | 1.045 | 704 | 973 | 505.5 | |
KCl-NaCl-MgCl2 | 1.083 | 656.5 | 923 | 475.6 | |
KCl-CaCl2-MgCl2 | 1.082 | 700.3 | 973 | 463.1 | |
KCl-NaCl-CaCl2-MgCl2 | 1.072 | 653.3 | 973 | 625.1 |
Table 5 Properties and thermal energy storage density
样品 | cp/(J?g-1?K-1) | ρ/(g·cm-3) | Tm/K | Tlim/K | E/(J?cm-3) |
---|---|---|---|---|---|
NaCl-CaCl2 | 0.850 | 772.3 | 1073 | 460.0 | |
NaCl-CaCl2-KCl | 0.908 | 776.8 | 1123 | 559.9 | |
NaCl-CaCl2-MgCl2 | 1.045 | 704 | 973 | 505.5 | |
KCl-NaCl-MgCl2 | 1.083 | 656.5 | 923 | 475.6 | |
KCl-CaCl2-MgCl2 | 1.082 | 700.3 | 973 | 463.1 | |
KCl-NaCl-CaCl2-MgCl2 | 1.072 | 653.3 | 973 | 625.1 |
1 | Wu Y T, Li Y, Lu Y W, et al. Novel low melting point binary nitrates for thermal energy storage applications[J]. Sol. Energy Mater. Sol. Cells, 2017, 164(5): 114-121. |
2 | Zhao Y, Wang R Z, Wang L W, et al. Development of highly conductive KNO3/NaNO3 composite for TES (thermal energy storage) [J]. Energy, 2014, 70(6): 272-277. |
3 | 高峰, 孙成权, 刘全根. 太阳能开发利用的现状及发展趋势[J]. 世界科技研究与发展, 2001, 23(4): 35-39. |
Gao F, Sun C Q, Liu Q G. The status and trends of solar energy utilization[J]. World Sci-Tech R & D, 2001, 23(4): 35-39. | |
4 | Vignarooban K, Xu X H, Arvay A, et al. Heat transfer fluids for concentrating solar power systems—a review[J]. Applied Energy, 2015, 146(5): 383-396. |
5 | Kearney D, Herrmann U, Nava P, et al. Assessment of a molten heat transfer fluid in a parabolic trough solar field[J]. Journal of Solar Energy Engineering, 2003, 125(2): 170-176. |
6 | Herrmann U, Kelly B, Price H. Two-tank molten salt storage for parabolic trough solar power plants[J]. Energy, 2004, 29(5/6): 883-893. |
7 | 王艳. 硝酸熔融盐蓄热过程中NOx的排放研究[D]. 广州: 华南理工大学, 2014. |
Wang Y. Study on NOx emission from nitrate molten salt during heat storage[D]. Guangzhou: South China University of Technology, 2014. | |
8 | Sergeev D, Kobertz D, Muller M. Thermodynamics of the NaCl-KCl system[J]. Thermochimica Acta, 2015, 606(4): 25-33. |
9 | Vignarooban K, Xu X H, Wang K, et al. Vapor pressure and corrosivity of ternary metal-chloride molten salt based heat transfer fluids for use in concentrating solar power systems[J]. Applied Energy, 2015, 159(C): 206-213. |
10 | Hofmeister M, Klein L, Miran H, et al. Corrosion behaviour of stainless steels and a single crystal super alloy in a ternary LiCl-KCl-CsCl molten salt[J]. Corrosion Science, 2015, 90(1): 46-53. |
11 | Wang K, Molina E, Dehghani G, et al. Experimental investigation to the properties of eutectic salts by NaCl-KCl-ZnCl2 for application as high temperature heat transfer fluids[C]//ASME 2014 8th International Conference on Energy Sustainability Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. Boston, Massachusetts, USA: 2014. |
12 | Vignarooban K, Pugazhendhi P. Corrosion resistance of hastelloys in molten metal chloride heat transfer fluids for concentrating solar power applications[J]. Solar Energy, 2014, 103(6): 62-69. |
13 | Kuravi S, Trahan J, Goswami D Y, et al. Thermal energy storage technologies and systems for concentrating solar power plants[J]. Progress in Energy & Combustion Science, 2013, 39(4): 285-319. |
14 | Wei X L, Song M, Wang W L, et al. Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage[J]. Applied Energy, 2015, 156(10): 306-310. |
15 | 刘波, 魏小兰, 彭强, 等. 五元氯化物熔盐的制备及其传蓄热性能[J]. 太阳能学报, 2018, 39(7): 1815-1821. |
Liu B, Wei X L, Peng Q, et al. Research on preparation and properties of quinary chloride molten salt[J]. Journal of Solar Energy, 2018, 39(7): 1815-1821. | |
16 | Xu X K, Dehghani G, Ning J X, et al. Basic properties of eutectic chloride salts NaCl-KCl-ZnCl2 and NaCl-KCl-MgCl2 as HTFs and thermal storage media measured using simultaneous DSC-TGA[J]. Solar Energy, 2018, 162(C): 431-441. |
17 | Li Y Y, Xu X K, Wang X X, et al. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP[J]. Solar Energy, 2017, 152(8): 57-79. |
18 | Li P W, Molina E, Wang K, et al. Thermal and transport properties of NaCl-KCl-ZnCl2 eutectic salts for new generation high-temperature heat-transfer fluids[J]. Journal of Solar Energy Engineering, 2016, 138(5): 4501-4508. |
19 | 孙李平. 太阳能高温熔盐优选及腐蚀特性实验研究[D]. 北京: 北京工业大学, 2007. |
Sun L P. Experimental research on molten salt corrosion property and optimization[D]. Beijing: Beijing University of Engineering and Technology, 2007. | |
20 | 钟志强, 杨旺, 何建军. 三元氯化物熔盐制备及其传蓄热性能研究[J]. 广东化工, 2019, 46(3): 49-51. |
Zhong Z Q, Yang W, He J J. Research on preparation and properties of ternary chloride molten salt[J]. Guangdong Chemical Industry, 2019, 46(3): 49-51. | |
21 | Xu X K, Wang X X, Li P W, et al. Experimental test of properties of KCl-MgCl2 eutectic molten salt for heat transfer and thermal storage fluid in concentrated solar power systems[J]. J. Sol. Energy Eng., 2018, 140(5): 1011-1019. |
22 | 贺万玉. 混合氯化物熔盐的热物性及腐蚀性实验研究[D]. 北京: 北京建筑大学, 2016. |
He W Y. Study on thermophysical properties and corrosiveness of chloride molten salt[D]. Beijing: Beijing University of Architecture, 2016. | |
23 | Mohan G, Venkataraman M, Vidal J G, et al. Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides[J]. Solar Energy, 2018, 176(C): 350-357. |
24 | 宋明, 魏小兰, 彭强, 等. 新型氯化物熔盐材料的设计及热稳定性研究[J]. 工程热物理学报, 2015, 36(2): 393-396. |
Song M, Wei X L, Peng Q, et al. Thermal stability of a new designed ternary chloride molten salt material[J]. Journal of Engineering Thermophysics, 2015, 36(2): 393-396. | |
25 | 廖敏, 丁静, 魏小兰, 等. 高温碳酸熔盐的制备及传热蓄热性质[J]. 无机盐工业, 2008, 40(10): 15-17. |
Liao M, Ding J, Wei X L, et al. Preparation and heat transfer and thermal storage property of high-temperature carbonate molten salt[J]. Inorganic Salt Industry, 2008, 40(10): 15-17. | |
26 | Janz G J, Allen C B, Bansal N P, et al. Physical properties data compilations relevant to enengy storageⅡmolten salts: data on single and multi-component salt systems[R]. Washington: US Government Printing Office, 1981. |
27 | 赵柏岑, 丁静, 魏小兰, 等. LiNO3-NaNO3-KNO3三元熔盐材料的设计及热稳定性研究[J]. 化工学报, 2019, 70(6): 2083-2091. |
Zhao B C, Ding J, Wei X L, et al. Design and thermal stability study of LiNO3-NaNO3-KNO3 ternary molten salt system[J]. CIESC Journal, 2019, 70(6): 2083-2091. | |
28 | Sora K, Gardiner J. Thermochermical Data of Pure Substances[M]. 3rd ed. New York: VCH Publishers, 1995, 426. |
29 | Williams D. Assessment of candidate molten salt coolants for the NGNP/NHI heat transfer loop[R]. Oak Ridge, TN, United States: Oak Ridge National Lab. (ORNL), 2006. |
30 | 丁静, 魏小兰, 彭强, 等. 中高温传热蓄热材料[M]. 北京: 科学出版社, 2013: 165. |
Ding J, Wei X L, Peng Q, et al. Medium and High Temperature Heat Transfer and Storage Materials[M]. Beijing: Science Press, 2013: 165. | |
31 | 傅崇说. 有色冶金原理[M]. 北京: 冶金工业出版社, 1993. |
Fu C S. Principles of Nonferrous Metallurgy[M]. Beijing: Metallurgical Industry Press, 1993. | |
32 | Zhang P, Cheng J H, Jin Y, et al. Evaluation of thermal physical properties of molten nitrate salts with low melting temperature[J]. Solar Energy Materials and Solar Cells, 2018, 176(3): 36-41. |
33 | 黄琼珠, 路贵民, 汪瑾, 等. MgCl2·6H2O热分解机理的研究[J]. 无机化学材料学报, 2010, 125(3): 306-310. |
Huang Q Z, Lu G M, Wang J, et al. Thermal decomposition mechanism of MgCl2·6H2O[J]. Journal of Inorganic Materials, 2010, 125(3): 306-310. | |
34 | 李永亮, 金翼, 黄云, 等. 储热技术基础(Ⅰ)-储热的基本原理及研究新动向[J]. 储能科学与技术, 2013, 2(1): 69-72. |
Li Y L, Jin Y, Huang Y. et al. Principles and new development of thermal storage technology(I)[J]. Energy Storage Science and Technology, 2013, 2(1): 69-72. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[3] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[6] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||