CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 1083-1088.DOI: 10.11949/j.issn.0438-1157.20181016
• Energy and environmental engineering • Previous Articles Next Articles
Yuling ZHANG1,2(),Liping ZHANG2,Qian WANG2,Xudong LI2,Xiaodong LIU2,Jinghong ZHANG2
Received:
2018-09-11
Revised:
2018-11-06
Online:
2019-03-05
Published:
2019-03-05
Contact:
Yuling ZHANG
张玉玲1,2(),张利平2,王倩2,李旭东2,刘晓冬2,张敬红2
通讯作者:
张玉玲
作者简介:
张玉玲(1977—),女,博士研究生,副教授,<email>zhangyuling_hit@163.com</email>
基金资助:
CLC Number:
Yuling ZHANG, Liping ZHANG, Qian WANG, Xudong LI, Xiaodong LIU, Jinghong ZHANG. Optimization of extraction process of inorganic phosphorus in scale of circulating cooling system[J]. CIESC Journal, 2019, 70(3): 1083-1088.
张玉玲, 张利平, 王倩, 李旭东, 刘晓冬, 张敬红. 循环冷却系统污垢中无机磷提取方法优化[J]. 化工学报, 2019, 70(3): 1083-1088.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181016
无机磷形态 | 提取方法 |
---|---|
弱吸附态磷(NH4Cl-P) | 1 mol/L NH4Cl溶液,振荡离心,过滤,测定提取液中磷浓度 |
铝结合态磷(Al-P) | 0.5 mol/L NH4F溶液(pH 8.2),振荡,离心,过滤,测定提取液中磷浓度 |
铁结合态磷(Fe-P) | 0.1 mol/L NaOH、0.5 mol/L Na2CO3混合提取液振荡提取,离心,过滤,向提取液中加入1 ml浓硫酸,测定磷浓度 |
钙结合态磷(Ca-P) | 1 mol/L H2SO4振荡1h,离心,过滤,调pH至中性,测定提取液中磷浓度 |
残渣磷(Res-P) | 残渣550℃灼烧5 h,1 mol/L HCl,振荡,离心,过滤,测定提取液中磷浓度 |
Table 1 Inorganic phosphorus form and SMT extraction method in sediment
无机磷形态 | 提取方法 |
---|---|
弱吸附态磷(NH4Cl-P) | 1 mol/L NH4Cl溶液,振荡离心,过滤,测定提取液中磷浓度 |
铝结合态磷(Al-P) | 0.5 mol/L NH4F溶液(pH 8.2),振荡,离心,过滤,测定提取液中磷浓度 |
铁结合态磷(Fe-P) | 0.1 mol/L NaOH、0.5 mol/L Na2CO3混合提取液振荡提取,离心,过滤,向提取液中加入1 ml浓硫酸,测定磷浓度 |
钙结合态磷(Ca-P) | 1 mol/L H2SO4振荡1h,离心,过滤,调pH至中性,测定提取液中磷浓度 |
残渣磷(Res-P) | 残渣550℃灼烧5 h,1 mol/L HCl,振荡,离心,过滤,测定提取液中磷浓度 |
样品编号 | 沉积物质量/g | 理论含磷量/mg | 回收磷量/mg | 回收率/% |
---|---|---|---|---|
1 | 5.1354 | 258.10 | 259.73 | 100.63 |
2 | 5.1363 | 260.42 | 252.92 | 97.12 |
3 | 5.1691 | 260.59 | 262.41 | 100.70 |
4 | 4.1339 | 258.20 | 251.64 | 97.46 |
Table 2 Inorganic phosphorus recovery rate of static scale
样品编号 | 沉积物质量/g | 理论含磷量/mg | 回收磷量/mg | 回收率/% |
---|---|---|---|---|
1 | 5.1354 | 258.10 | 259.73 | 100.63 |
2 | 5.1363 | 260.42 | 252.92 | 97.12 |
3 | 5.1691 | 260.59 | 262.41 | 100.70 |
4 | 4.1339 | 258.20 | 251.64 | 97.46 |
Sample serial number | NH4Cl-P (mg/g) | Al-P (mg/g) | Fe-P (mg/g) | Ca-P (mg/g) | Total particulate inorganic phosphorus/mg | Total dissolved inorganic phosphorus/mg | Experimentally measured inorganic phosphorus /mg | Inorganic phosphorus addition/mg | Recovery rate/% | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.598 | 1.54 | 0.826 | 2.98 | 1016.06 | 55.74 | 1061.80 | 1061.58 | 100.96 | |
1.592 | 1.548 | 0.822 | 3.08 | 1009.58 | 55.74 | 1062.32 | 1061.58 | 100.35 | ||
2 | 1.552 | 2.392 | 0.634 | 1.78 | 1032.98 | 15.94 | 1048.92 | 1062.16 | 98.75 | |
1.566 | 2.412 | 0.586 | 1.792 | 1024.60 | 15.94 | 1040.54 | 1062.16 | 97.96 | ||
3 | 1.356 | 2.208 | 1.116 | 1.476 | 997.80 | 31.11 | 1028.91 | 1062.81 | 96.81 | |
1.372 | 2.17 | 1.13 | 1.488 | 1024.32 | 31.11 | 1055.42 | 1062.81 | 99.30 |
Table 3 Qualitative and quantitative analysis of inorganic phosphorus
Sample serial number | NH4Cl-P (mg/g) | Al-P (mg/g) | Fe-P (mg/g) | Ca-P (mg/g) | Total particulate inorganic phosphorus/mg | Total dissolved inorganic phosphorus/mg | Experimentally measured inorganic phosphorus /mg | Inorganic phosphorus addition/mg | Recovery rate/% | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.598 | 1.54 | 0.826 | 2.98 | 1016.06 | 55.74 | 1061.80 | 1061.58 | 100.96 | |
1.592 | 1.548 | 0.822 | 3.08 | 1009.58 | 55.74 | 1062.32 | 1061.58 | 100.35 | ||
2 | 1.552 | 2.392 | 0.634 | 1.78 | 1032.98 | 15.94 | 1048.92 | 1062.16 | 98.75 | |
1.566 | 2.412 | 0.586 | 1.792 | 1024.60 | 15.94 | 1040.54 | 1062.16 | 97.96 | ||
3 | 1.356 | 2.208 | 1.116 | 1.476 | 997.80 | 31.11 | 1028.91 | 1062.81 | 96.81 | |
1.372 | 2.17 | 1.13 | 1.488 | 1024.32 | 31.11 | 1055.42 | 1062.81 | 99.30 |
1 | StutterM I, DemarsB O, LanganS J. River phosphorus cycling: separating biotic and abiotic uptake during short-term changes in sewage effluent loading[J]. Water Research, 2010, 44(15): 4425-4436. |
2 | ParsonsC T, RezanezhadF, O’ConnellD W, et al. Sediment phosphorus speciation and mobility under dynamic redox conditions[J]. Biogeosciences, 2017, 14(14): 1-36. |
3 | XiangS L, ZhouW B. Phosphorus forms and distribution in the sediments of Poyang Lake, China[J].International Journal of Sediment Research, 2011, 26(2) : 230-238. |
4 | KangX, SongJ, YuanH, et al. Phosphorus speciation and its bioavailability in sediments of the Jiaozhou Bay[J]. Estuarine Coastal & Shelf Science, 2017, 188: 127-136. |
5 | 杨斌, 王婷, 王坤, 等. 一种改进的磷形态连续提取方法[J]. 环境科学与技术, 2017, 40(9): 90-97. |
YangB, WangT, WangK, et al. A modified sequential extraction method for the determination of phosphorus fraction in sediment[J]. Environmental Science & Technology, 2017, 40(9): 90-97. | |
6 | LiH, ChienS H, HsiehM K, et al. Escalating water demand for energy production and the potential for use of treated municipal wastewater[J]. Environmental Science & Technology, 2011, 45(10): 4195-4200. |
7 | 雷玉桃, 黎锐锋. 中国工业用水影响因素的长期动态作用机理[J].中国人口资源与环境, 2015, 25(2): 1- 8. |
LeiY T, LiR F. Study on the dynamic long-term interaction-mechanism of Chinese industry water consumption and influencing factors[J]. China Population, Resources and Environment, 2015, 25(2): 1- 8. | |
8 | LiuW S, ChienS H, DzombakD A, et al. Mineral scaling mitigation in cooling systems using tertiary-treated municipal wastewater[J]. Water Research, 2012, 46(14): 4488-4498. |
9 | 王绍华, 赵庆良, 任艳琴. 再生水水质对冷却水系统结垢的影响[J].环境保护科学, 2011, 37(1): 14 -17. |
WangS H, ZhaoQ L, RenY Q, et al. Effect of reclaimed water quality on scale deposit in cooling water circulation system[J]. Environmental Protection Science, 2011, 37(1): 14 -17. | |
10 | 林杨杰, 王宏, 孟露, 等. 再生水用于循环冷却系统时不锈钢腐蚀的研究[J]. 工业水处理, 2016, 36(9): 39-42. |
LinY J, WangH, MengL, et al. Research on stainless steel corrosion when reclaimed water is used in circulating cooling water systems[J]. Industrial Water Treatment, 2016, 36(9): 39-42. | |
11 | ZhangB R, ZhangL, LiF T, et al. Testing the formation of Ca–phosphonate precipitates and evaluating the anionic polymers as Ca-phosphonate precipitates and CaCO3 scale inhibitor in simulated cooling water [J]. Corrosion Science, 2010, 52(12): 3883-3890. |
12 | 陈海龙, 袁旭音, 王欢, 等. 苕溪干流悬浮物和沉积物的磷形态分布及成因分析[J]. 环境科学, 2015, 36(2): 464-470. |
ChenH L, YuanX Y, WangH, et al. Distributions of phosphorus fractions in suspended sediments and surface sediments of Tiaoxi Mainstr[J]. Environmental Science, 2015, 36(2): 464-470. | |
13 | ChoudhuryM R, HsiehM K, VidicR D, et al. Corrosion management in power plant cooling systems using tertiary-treated municipal wastewater as makeup water[J]. Corrosion Science, 2012, 61(4): 231-241. |
14 | LiH, HsiehM K, ChienS H, et al. Control of mineral scale deposition in cooling systems using secondary-treated municipal wastewater[J]. Water Research, 2011, 45(2): 748. |
15 | 黄刚华, 王月, 张强, 等. 中水回用对循环冷却水系统影响研究进展[J]. 水处理技术, 2016, (2): 15-18. |
HuangG H, WangY, ZhangQ, et al. Research progress on the effect of reclaimed water reuse on circulating cooling water system[J]. Technology of Water Treatment, 2016, (2): 15-18. | |
16 | WangC, LiS P, LiT D. Calcium carbonate inhibition by a phosphonate-terminated poly(maleic-co-sulfonate) polymeric inhibitor[J]. Desalination, 2009, 249(1): 1-4. |
17 | 刘天庆, 李香琴, 王鸿灵, 等. 水系统中微生物与碳酸钙混合垢形成过程的研究[J]. 高校化学工程学报, 2002, 16(3): 263-269. |
LiuT Q, LiX Q, WangH L, et al. Study on the formation process of microbial and calcium carbonate mixed scale in water system[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(3): 263-269. | |
18 | HsiehM K, LiH, ChienS H, et al. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems[J]. Water Environment Research A Research Publication of the Water Environment Federation, 2010, 82(12): 2346-2356. |
19 | TouirR, DkhirecheN, TouhamiM E, et al. Study of phosphonate addition and hydrodynamic conditions on ordinary steel corrosion inhibition in simulated cooling water[J]. Materials Chemistry & Physics, 2010, 122(1): 1-9. |
20 | NowackB. Environmental chemistry of phosphonates[J]. Water Research, 2003, 37(11): 2533-2546. |
21 | 金晓丹, 吴昊, 王启明, 等. 钙离子和pH对长江河口青草沙水库水体磷浓度的影响[J]. 环境工程技术学报, 2016, 6(5): 462-468. |
JinX D, WuH, WangQ M, et al. Impact of calcium and pH on content of phosphorus in water of Qingcaosha reservoir of Yangtze estuary[J]. Journal of Environmental Engineering Technology, 2016, 6(5): 462-468. | |
22 | RafieeradA R, AshraM R, MahmoodianR, et al. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: a review paper[J]. Materials Science and Engineering C, 2015, 57: 397–413. |
23 | RubanV, BrigaultS, DemareE D, et al. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France[J]. Journal of Environmental Monitoring, 1999, 1(4): 403-407. |
24 | HiehjesA H, LijklemaL. Fractionation of inorganic phosphorus in calcareors sediments [J]. Journal of Environmental Quality, 1980, 8: 130-132. |
25 | RuttenbergK C. Development of a sequential extraction method for different forms of phosphorus in marine sediments [J]. Limnology Oceanography, 1992, 37: 1460-1482. |
26 | GoltermanH L. Fractionation of sediment phosphate with chelating compounds: a simplification, and comparison with other methods[J]. Hydrobiologia, 1996, 335(1): 87-95. |
27 | 刘冠男, 董黎明, 王小辉. 湖泊沉积物中三种磷提取方法比较[J]. 岩矿测试, 2011, 30(3): 276-280. |
LiuG N, DongL M, WangX H. Comparison of three extraction methods of phosphorus in lacustrine sediments[J]. Rock and Mineral Analysis, 2011, 30(3): 276-280. | |
28 | 许春雪, 袁建, 王亚平, 等. 沉积物中磷的赋存形态及磷形态顺序提取分析方法[J]. 岩矿测试, 2011, 30(6) : 785-794. |
XuC X, YuanJ, WangY P, et al. Speciation and release mechanism of phosphorus in sediments and analysis methods for sequential extraction[J]. Rock and Mineral Analysis, 2011, 30(6) : 785-794. | |
29 | 沈雪莲, 周振, 任伟超, 等. 城镇污水处理厂污泥中磷的形态分布及生物可利用性分析[J]. 环境工程学报, 2016, 10(3): 1200-1204. |
ShenX L, ZhouZ, RenW C, et al. Fractionation and bioavailability of phosphorus in sludge from municipal wastewater treatment plants[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1200-1204. | |
30 | 宋明阳, 李敏, 袁溪, 等. 污水处理厂污泥磷形态及低温热解-碱解联合处理的释磷效果研究[J]. 环境工程, 2018, (1): 112-117. |
SongM Y, LiM, YuanX, et al. Phosphorus decomposition in sewage treatment plant sewage and hot alkali pretreatment for phosphorus release efficiency[J]. Environmental Engineering, 2018, (1): 112-117. | |
31 | 郭晨辉, 李和祥, 方芳, 等. 黄河甘宁蒙段表层沉积物中总磷3种提取方法的比较[J]. 中国环境监测, 2017, (6): 95-99. |
GuoC H, LiH X, FangF, et al. Comparison of three extraction methods of total phosphorus in surface sediments from Gansu, Ningxia and Inner Mongolia sections of the Yellow River[J]. Environmental Monitoring in China, 2017, (6): 95-99. | |
32 | ZhaoG Q, ShengY Q, JiangM, et al. The biogeochemical characteristics of phosphorus in coastal sediments under high salinity and dredging conditions[J]. Chemosphere, 2019, 215(1): 681-692. |
33 | WaterlotC. Alternative approach to the standard, measurements and testing programme used to establish phosphorus fractionation in soils[J]. Analytica Chimica Acta, 2018, 1003: 26-33. |
34 | 王书航, 张博, 姜霞, 等. 采用连续分级提取法研究沉积物中磷的化学形态[J]. 环境科学研究, 2015, 28(9): 1382-1388. |
WangS H, ZhangB, JiangX, et al. Analysis of phosphorus fractions in sediments by sequential extraction[J]. Research of Environmental Sciences, 2015, 28(9): 1382-1388. | |
35 | 李悦, 乌大年, 薛永先. 沉积物中不同形态磷提取方法的改进及其环境地球化学意义[J]. 海洋环境科学, 1998, 17(1): 15-20. |
LiY, WuD N, XueY X. Improvement of extraction methods of different forms of phosphorus in sediments and their environmental geochemical significance[J]. Marine Environmental Science, 1998, 17(1): 15-20. | |
36 | AydinI, ImamogluS, AydinF, et al. Determination of mineral phosphate species in sedimentary phosphate rock in Mardin, SE Anatolia, Turkey by sequential extraction[J]. Microchem. J., 2009, 91: 63-69. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Jing ZHAO, Chengwen GU, Xigao JIAN, Zhihuan WENG. Preparation and performance evaluation of magnolol-based epoxy resin anti-corrosion coatings [J]. CIESC Journal, 2023, 74(7): 3010-3017. |
[4] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[5] | Xiaolan WEI, Wenjie QI, Jing DING, Jianfeng LU, Weilong WANG, Shule LIU. Effect of valence state of chromium in molten chloride salt on corrosivity of nickel-based alloy [J]. CIESC Journal, 2022, 73(7): 3182-3192. |
[6] | Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater [J]. CIESC Journal, 2022, 73(5): 2158-2173. |
[7] | Hao ZHANG, Yu ZHAO, Zhiming XU, Jinhui LI. Study on scale inhibition characteristics of carboxymethyl dextran by fast controlled precipitation method [J]. CIESC Journal, 2022, 73(4): 1515-1522. |
[8] | Guoqing SU, Jianwen ZHANG, Yan LI. Study on the occurrence and development mechanism of pipeline corrosion behind butterfly valve [J]. CIESC Journal, 2022, 73(12): 5504-5516. |
[9] | LI Haiyan, LIU Huan, ZHANG Xiuju, WANG Geyi, ZHOU Qiaoyan, CHEN Tongzhou, YAO Hong. Summary of improving erosion and corrosion resistance of heat exchange surfaces in boilers through HVOF technology [J]. CIESC Journal, 2021, 72(4): 1833-1846. |
[10] | TAN Zhuowei, YANG Liuyang, WANG Zhenbo, DOU Xiaohui, ZHANG Dalei, ZHANG Mingyang, JIN Youhai. Study on interaction mechanism of local turbulent flow induced by local corrosion of X80 pipeline steel in high shear flow field [J]. CIESC Journal, 2021, 72(4): 2203-2212. |
[11] | HE Jizhe, LIU Mingyan, XU Yangshuhan. Study on anticorrosive properties of epoxy soybean oil resin coating [J]. CIESC Journal, 2021, 72(2): 1067-1077. |
[12] | Yuzhu CAO,Xin LU,Litong WANG,Manlin YUAN,Zhong XIN. Preparation and anticorrosion properties of bio-based polybenzoxazine/cellulose nanocrystals superhydrophobic coating [J]. CIESC Journal, 2021, 72(11): 5717-5725. |
[13] | Jian LI, Ge PU, Jiashan CHEN, Qiwen LIU. High-temperature volatility characteristics and pyrolysis mechanism of common sodium salts [J]. CIESC Journal, 2020, 71(8): 3452-3459. |
[14] | Tianyu ZHENG, Lu WANG, Jinyan LIU, Jia WANG. Corrosion inhibition of ionic liquids on the surface of Q235 steel in methanol/sulfuric acid medium [J]. CIESC Journal, 2020, 71(5): 2230-2239. |
[15] | Aimin TU, Shijie LIU, Xun MO, Dongsheng ZHU, Yinde YIN. Feasibility study of spiral twisted tube for gas turbine inlet temperature regulating heat exchanger [J]. CIESC Journal, 2020, 71(4): 1562-1569. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||