CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1713-1722.DOI: 10.11949/j.issn.0438-1157.20181269
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Nenglian FENG1(),Ruijin MA1,Longke CHEN2,Shikang DONG1,Xiaofeng WANG3,Xingyu ZHANG3
Received:
2018-10-29
Revised:
2019-01-25
Online:
2019-05-05
Published:
2019-05-05
Contact:
Nenglian FENG
冯能莲1(),马瑞锦1,陈龙科2,董士康1,王小凤3,张星宇3
通讯作者:
冯能莲
作者简介:
冯能莲(1962—),男,博士,教授,<email>fengnl@bjut.edu.cn</email>
基金资助:
CLC Number:
Nenglian FENG, Ruijin MA, Longke CHEN, Shikang DONG, Xiaofeng WANG, Xingyu ZHANG. Heat transfer characteristics of honeycomb liquid-cooled power battery module[J]. CIESC Journal, 2019, 70(5): 1713-1722.
冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181269
材料 | ρ/(kg/m3) | cp /(J/(kg·K)) | k/(W/(m·K)) |
---|---|---|---|
铝合金 | 2700 | 880 | 193 |
空气 | 1.225 | 1006.43 | 0.0242 |
冷却液 | 1073.35 | 3291 | 0.38 |
电池 | 2804.7 | 950 | 2/2/15 |
Table 1 Physical properties of M60's main materials
材料 | ρ/(kg/m3) | cp /(J/(kg·K)) | k/(W/(m·K)) |
---|---|---|---|
铝合金 | 2700 | 880 | 193 |
空气 | 1.225 | 1006.43 | 0.0242 |
冷却液 | 1073.35 | 3291 | 0.38 |
电池 | 2804.7 | 950 | 2/2/15 |
1 | Greco A , Jiang X , Cao D P . An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite[J]. Journal of Power Sources, 2015, 278: 50-68. |
2 | Ling Z Y , Zhang Z G , Shi G Q , et al . Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules[J]. Renew. Sustain. Energy Rev., 2014, 31: 427-438. |
3 | Zhao J T , Rao Z H , Huo Y T , et al . Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles[J]. Appl. Therm. Eng., 2015, 85: 33-43. |
4 | Malik M , Dincer I , Rosen M A . Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles[J]. Int. J. Energy Res., 2016, 40(8): 1011-1031. |
5 | Chacko S , Chung Y M . Thermal modeling of Li-ion polymer battery for electric vehicle drive cycles[J]. Journal of Power Sources, 2012, 213(9): 296-303. |
6 | Liu R , Chen J X , Xun J Z , et al . Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Appl. Energy, 2014, 132: 288-97. |
7 | Manzetti S , Mariasiu F . Electric vehicle battery technologies: from present state to future systems[J]. Renew. Sustain. Energy Rev., 2015, 51: 1004-1012. |
8 | Shah K , Chalise D , Jain A . Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells[J]. Journal of Power Sources, 2016, 330: 167-174. |
9 | Wilke S , Schweitzer B , Khateeb S , et al . Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study[J]. Journal of Power Sources, 2017, 340: 51-59. |
10 | Wang H , Lara-Curzio E , Rule E T , et al . Winchester, mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries[J]. Journal of Power Sources, 2017, 342: 913-920. |
11 | Pesaran A A . Battery thermal management in EVs and HEVs: issues and solutions[C]//Advanced Automotive Battery Conference. Nevada, 2001. |
12 | Klein M , Tong S , Park J W . In-plane nonuniform temperature effects on the performance of a large-format lithium-ion pouch cell[J]. Appl. Energy, 2016, 165: 639-647. |
13 | Zhao C R , Cao W J , Dong T , et al . Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2018, 120: 751-762. |
14 | Liu Z , Wang Y , Zhang J , et al . Shortcut computation for the thermal management of a large air-cooled battery pack[J]. Appl. Therm. Eng., 2014, 66: 445-452. |
15 | Xu X M , He R . Review on the heat dissipation performance of battery pack with different structures and operation conditions[J]. Renew. Sustain. Energy Rev., 2014, 29: 301-315. |
16 | Yu K , Yang X , Cheng Y , et al . Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack [J]. Journal of Power Sources, 2014, 270: 193-200. |
17 | Chen D F , Jiang J C , Kim G H , et al . Comparison of different cooling methods for lithium ion battery cells[J]. Appl. Therm. Eng., 2016, 94: 846-854. |
18 | Rao Z H , Wang S F , Zhang Y L . Thermal management with phase change material for a power battery under cold temperatures[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(20): 2287-2295. |
19 | Duan X , Naterer G F . Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5176-5182. |
20 | Javani N , Dincer I , Naterer G F , et al . Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles[J]. Int. J. Heat Mass Transf., 2014, 72: 690-703. |
21 | Lin C J , Xu S C , Chang G F , et al . Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets[J]. Journal of Power Sources, 2015, 275: 742-749. |
22 | Nelson P , Dees D , Amine K , et al . Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of Power Sources, 2002, 110(2): 349-356. |
23 | Zhang T S , Gao C , Gao Q , et al . Status and development of electric vehicle integrated thermal management from BTM to HVAC[J]. Appl. Therm. Eng., 2015, 88: 398-409. |
24 | Chen D , Jiang J , Kim G H , et al . Comparison of different cooling methods for lithium ion battery cells[J]. Appl. Therm. Eng., 2016, 94: 846-854. |
25 | Yuan H , Wang L F . Battery thermal management system with liquid cooling and heating in electric vehicles[J]. J. Automotive Safety and Energy, 2012, 3(4): 371-380. |
26 | Liu R , Chen J X , Xun J Z , et al . Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Applied Energy, 2014, 132: 288-297. |
27 | Jarrett A , Kim I Y . Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245: 644-655. |
28 | Adams D , Berdichevsky E , Colson T , et al . Battery pack thermal management system: US2009/0023056A1[P]. 2009-01-22. |
29 | 安徽新能科技有限公司 . 一种用于新能源电动汽车中冷却箱的焊接: 106181082A[P]. 2016-07-10. |
Anhui Xinen Technology Company . A welding method for cooling box of new energy electric vehicle: 106181082A[P]. 2016-07-10. | |
30 | Nishi Y . Lithium ion batteries: past 10 years and the future[J]. Journal of Power Sources, 2001, 100: 101-106. |
31 | Chen S C , Wan C C , Wang Y Y . Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140: 111-124. |
32 | Saw L H , Ye Y H , Tay A A O . Electrochemical–thermal analysis of 18650 lithium iron phosphate cell[J]. Energy Convers. Manage., 2013, 75: 162-174. |
33 | Emre G , Özgür E , Murat K . 3-D CFD modeling and experimental testing of thermal behavior of a Li-ion battery[J]. Applied Thermal Engineering, 2017, 120: 484-495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||