CIESC Journal ›› 2019, Vol. 70 ›› Issue (9): 3537-3544.DOI: 10.11949/0438-1157.20190311
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yuxuan ZHANG(),Xiaoqiang ZHAI()
Received:
2019-04-01
Revised:
2019-06-19
Online:
2019-09-05
Published:
2019-09-05
Contact:
Xiaoqiang ZHAI
通讯作者:
翟晓强
作者简介:
张宇轩(1995—),男,硕士研究生,基金资助:
CLC Number:
Yuxuan ZHANG, Xiaoqiang ZHAI. Development and spectral reflectance analysis of thermochromic coatings for buildings[J]. CIESC Journal, 2019, 70(9): 3537-3544.
张宇轩, 翟晓强. 感温变色建筑涂料的制备及光谱反射性能实验研究[J]. 化工学报, 2019, 70(9): 3537-3544.
Add to citation manager EndNote|Ris|BibTeX
实验组 | TiO2质量分数/% | TCM质量分数/% |
---|---|---|
1 | 0 | 5 |
2 | 5 | 5 |
3 | 10 | 5 |
4 | 15 | 5 |
5 | 0 | 10 |
6 | 5 | 10 |
7 | 10 | 10 |
8 | 15 | 10 |
9 | 0 | 15 |
10 | 5 | 15 |
11 | 10 | 15 |
12 | 15 | 15 |
Table 1 Mass fractions of TiO2 and TCM for each sample
实验组 | TiO2质量分数/% | TCM质量分数/% |
---|---|---|
1 | 0 | 5 |
2 | 5 | 5 |
3 | 10 | 5 |
4 | 15 | 5 |
5 | 0 | 10 |
6 | 5 | 10 |
7 | 10 | 10 |
8 | 15 | 10 |
9 | 0 | 15 |
10 | 5 | 15 |
11 | 10 | 15 |
12 | 15 | 15 |
样品 | 5%TCM | 10%TCM | 15%TCM | |||
---|---|---|---|---|---|---|
深色态 | 浅色态 | 深色态 | 浅色态 | 深色态 | 浅色态 | |
0%TiO2 | | | | | | |
5%TiO2 | | | | | | |
10%TiO2 | | | | | | |
15%TiO2 | | | | | | |
Table 2 Comparison of samples in colored phase and colorless phase
样品 | 5%TCM | 10%TCM | 15%TCM | |||
---|---|---|---|---|---|---|
深色态 | 浅色态 | 深色态 | 浅色态 | 深色态 | 浅色态 | |
0%TiO2 | | | | | | |
5%TiO2 | | | | | | |
10%TiO2 | | | | | | |
15%TiO2 | | | | | | |
样品 | 太阳反射比 | 反射比变化 | ||
---|---|---|---|---|
深色态 | 浅色态 | |||
5%TCM | 0%TiO2 | 0.43 | 0.55 | 0.12 |
5%TiO2 | 0.51 | 0.72 | 0.21 | |
10%TiO2 | 0.55 | 0.77 | 0.22 | |
15%TiO2 | 0.62 | 0.78 | 0.16 | |
10%TCM | 0%TiO2 | 0.41 | 0.54 | 0.13 |
5%TiO2 | 0.51 | 0.72 | 0.21 | |
10%TiO2 | 0.53 | 0.75 | 0.22 | |
15%TiO2 | 0.65 | 0.81 | 0.16 | |
15%TCM | 0%TiO2 | 0.43 | 0.56 | 0.13 |
5%TiO2 | 0.50 | 0.72 | 0.22 | |
10%TiO2 | 0.53 | 0.75 | 0.22 | |
15%TiO2 | 0.64 | 0.82 | 0.18 |
Table 3 Solar reflectance of samples in colored and colorless phase
样品 | 太阳反射比 | 反射比变化 | ||
---|---|---|---|---|
深色态 | 浅色态 | |||
5%TCM | 0%TiO2 | 0.43 | 0.55 | 0.12 |
5%TiO2 | 0.51 | 0.72 | 0.21 | |
10%TiO2 | 0.55 | 0.77 | 0.22 | |
15%TiO2 | 0.62 | 0.78 | 0.16 | |
10%TCM | 0%TiO2 | 0.41 | 0.54 | 0.13 |
5%TiO2 | 0.51 | 0.72 | 0.21 | |
10%TiO2 | 0.53 | 0.75 | 0.22 | |
15%TiO2 | 0.65 | 0.81 | 0.16 | |
15%TCM | 0%TiO2 | 0.43 | 0.56 | 0.13 |
5%TiO2 | 0.50 | 0.72 | 0.22 | |
10%TiO2 | 0.53 | 0.75 | 0.22 | |
15%TiO2 | 0.64 | 0.82 | 0.18 |
样品 | 全光谱波段太阳反射比 | 全光谱波段太阳反射比变化 | 紫外波段太阳反射比 | 紫外波段太阳反射比变化 | 可见光波段太阳反射比 | 可见光波段太阳反射比变化 | 近红外波段太阳反射比 | 近红外波段太阳反射比变化 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
深色态 | 浅色态 | 深色态 | 浅色态 | 深色态 | 浅色态 | 深色态 | 浅色态 | |||||
25 nm TiO2 | 0.59 | 0.77 | 0.18 | 0.1 | 0.15 | 0.05 | 0.48 | 0.82 | 0.34 | 0.77 | 0.78 | 0.01 |
60 nm TiO2 | 0.55 | 0.77 | 0.22 | 0.07 | 0.19 | 0.12 | 0.4 | 0.81 | 0.41 | 0.77 | 0.78 | 0.01 |
100 nm TiO2 | 0.56 | 0.74 | 0.18 | 0.06 | 0.2 | 0.14 | 0.4 | 0.74 | 0.34 | 0.79 | 0.8 | 0.01 |
200 nm TiO2 | 0.56 | 0.7 | 0.14 | 0.06 | 0.2 | 0.14 | 0.4 | 0.66 | 0.26 | 0.8 | 0.81 | 0.01 |
400 nm TiO2 | 0.57 | 0.7 | 0.13 | 0.08 | 0.18 | 0.1 | 0.41 | 0.66 | 0.25 | 0.8 | 0.81 | 0.01 |
Table 4 Reflectance of thermochromic coating samples in different bands
样品 | 全光谱波段太阳反射比 | 全光谱波段太阳反射比变化 | 紫外波段太阳反射比 | 紫外波段太阳反射比变化 | 可见光波段太阳反射比 | 可见光波段太阳反射比变化 | 近红外波段太阳反射比 | 近红外波段太阳反射比变化 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
深色态 | 浅色态 | 深色态 | 浅色态 | 深色态 | 浅色态 | 深色态 | 浅色态 | |||||
25 nm TiO2 | 0.59 | 0.77 | 0.18 | 0.1 | 0.15 | 0.05 | 0.48 | 0.82 | 0.34 | 0.77 | 0.78 | 0.01 |
60 nm TiO2 | 0.55 | 0.77 | 0.22 | 0.07 | 0.19 | 0.12 | 0.4 | 0.81 | 0.41 | 0.77 | 0.78 | 0.01 |
100 nm TiO2 | 0.56 | 0.74 | 0.18 | 0.06 | 0.2 | 0.14 | 0.4 | 0.74 | 0.34 | 0.79 | 0.8 | 0.01 |
200 nm TiO2 | 0.56 | 0.7 | 0.14 | 0.06 | 0.2 | 0.14 | 0.4 | 0.66 | 0.26 | 0.8 | 0.81 | 0.01 |
400 nm TiO2 | 0.57 | 0.7 | 0.13 | 0.08 | 0.18 | 0.1 | 0.41 | 0.66 | 0.25 | 0.8 | 0.81 | 0.01 |
1 | Santamouris M , Synnefa A , Karlessi T . Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions[J]. Solar Energy, 2011, 85(12): 3085-3102. |
2 | Dimoudi A , Zoras S , Kantzioura A , et al . Use of cool materials and other bioclimatic interventions in outdoor places in order to mitigate the urban heat island in a medium size city in Greece[J]. Sustainable Cities and Society, 2014, 13: 89-96. |
3 | Garshasbi S , Santamouris M . Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating[J]. Solar Energy Materials and Solar Cells, 2019, 191: 21-32. |
4 | Gago E J , Roldan J , Pacheco-Torres R , et al . The city and urban heat islands: a review of strategies to mitigate adverse effects[J]. Renewable and Sustainable Energy Reviews, 2013, 25: 749-758. |
5 | Chang Y H , Huang P H , Wu B Y , et al . A study on the color change benefits of sustainable green building materials[J]. Construction and Building Materials, 2015, 83: 1-6. |
6 | Akbari H , Cartalis C , Kolokotsa D , et al . Local climate change and urban heat island mitigation techniques–the state of the art[J]. Journal of Civil Engineering and Management, 2016, 22(1): 1-16. |
7 | Santamouris M . Regulating the damaged thermostat of the cities—status, impacts and mitigation challenges[J]. Energy and Buildings, 2015, 91: 43-56. |
8 | Alchapar N L , Correa E N , Canton M A . Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones[J]. Energy Build, 2013, 69: 22-32. |
9 | Baniassadi A , Sailor D J , Crank P J , et al . Direct and indirect effects of high-albedo roofs on energy consumption and thermal comfort of residential buildings[J]. Energy and Buildings, 2018, 178: 71-83. |
10 | Giridharan R , Emmanuel R . The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: a review[J]. Sustainable Cities and Society, 2018, 40: 677-687. |
11 | Revel G M , Martarelli M , Emiliani M , et al . Cool products for building envelope(Ⅰ): Development and lab scale testing[J]. Solar Energy, 2014, 105: 770-779. |
12 | 张宇轩, 翟晓强 . 缓解城市热岛效应的策略及其研究进展[J]. 建筑科学, 2017, (12): 142-151. |
Zhang Y X , Zhai X Q . Research on strategies to mitigate urban heat island[J]. Building Science, 2017, (12): 142-151. | |
13 | Synnefa A , Santamouris M , Akbari H . Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions[J]. Energy and Buildings, 2007, 39(11): 1167-1174. |
14 | Granqvist C G . Recent progress in thermochromics and electrochromics: a brief survey[J]. Thin Solid Films, 2016, 614: 90-96. |
15 | Kanu S S , Binions R . Thin films for solar control applications[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 466(2113): 19-44. |
16 | Granqvist C G , Green S , Niklasson G A , et al . Advances in chromogenic materials and devices[J]. Thin Solid Films, 2010, 518(11): 3046-3053. |
17 | Kamalisarvestani M , Saidur R , Mekhilef S , et al . Performance, materials and coating technologies of thermochromic thin films on smart windows[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 353-364. |
18 | Baetens R , Jelle B P , Gustavsen A . Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review[J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 87-105. |
19 | Cao X , Jin P , Luo H . VO2-based thermochromic materials and applications: flexible foils and coated glass for energy building efficiency[M]//Nanotechnology in Eco-efficient Construction. Woodhead Publishing, 2019: 503-524. |
20 | Tällberg R , Jelle B P , Loonen R , et al . Comparison of the energy saving potential of adaptive and controllable smart windows: a state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109828. |
21 | Ke Y , Zhou C , Zhou Y , et al . Emerging thermal-responsive materials and integrated techniques targeting the energy‐efficient smart window application[J]. Advanced Functional Materials, 2018, 28(22): 1800113. |
22 | Ma Y P . Research on the preparation of reversibly thermochromic cement based material at normal temperature[J]. Journal of Building Materials, 2006, 9(6): 700-704. |
23 | Ma Y , Zhang X , Zhu B , et al . Research on reversible effects and mechanism between the energy-absorbing and energy-reflecting states of chameleon-type building coatings[J]. Solar Energy, 2002, 72(6): 511-520. |
24 | Karlessi T , Santamouris M , Apostolakis K , et al . Development and testing of thermochromic coatings for buildings and urban structures[J]. Solar Energy, 2009, 83(4): 538-551. |
25 | Hu J , Wanasekara N , Yu X . Thermal properties of thermochromic asphalt binders by modulated differential scanning calorimetry[J]. Transportation Research Record, 2014, 2444(1): 142-150. |
26 | Zheng S , Xu Y , Shen Q , et al . Preparation of thermochromic coatings and their energy saving analysis[J]. Solar Energy, 2015, 112(112): 263-271. |
27 | Park B , Krarti M . Energy performance analysis of variable reflectivity envelope systems for commercial buildings[J]. Energy and Buildings, 2016, 124: 88-98. |
28 | Garshasbi S , Santamouris M . Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating[J]. Solar Energy Materials and Solar Cells, 2019, 191: 21-32. |
29 | Karlessi T , Santamouris M . Improving the performance of thermochromic coatings with the use of UV and optical filters tested under accelerated aging conditions[J]. International Journal of Low-Carbon Technologies, 2013, 10(1): 45-61. |
30 | 周小雯 . 太阳吸收比的计算方法[C]//2011中国太阳能热利用行业年会暨高峰论坛. 西安: 中国农村能源行业协会太阳能热利用专业委员会, 中国节能协会太阳能专业委员会, 中国太阳能热利用产业联盟, 2011. |
Zhou X W . The calculation method of solar absorptance[C]//2011 China Solar Thermal Utilization Industry Annual Conference. Xi’an: China Rural Energy Industry Association Solar Thermal Utilization Professional Committee, China Energy Conservation Association Solar Professional Committee, China Solar Thermal Utilization Industry Alliance, 2011. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[4] | Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction [J]. CIESC Journal, 2023, 74(1): 29-44. |
[5] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[6] | Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres [J]. CIESC Journal, 2022, 73(8): 3636-3646. |
[7] | Yu QIAN, Yaoxi CHEN, Xiaofei SHI, Siyu YANG. Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system [J]. CIESC Journal, 2022, 73(5): 2101-2110. |
[8] | Rong MA, Jie SUN, Donghui LI, Jinjia WEI. Self-floating high-efficient evaporative catalytic seawater hydrogen production system driven by concentrated solar energy based on Cu/TiO2/C-Wood composite [J]. CIESC Journal, 2022, 73(4): 1695-1703. |
[9] | Zihe CHEN, Chengzhi ZHAO, Wenli MAO, Nan SHENG, Chunyu ZHU. Preparation and thermal properties of phase change composites supported by oriented biomass porous carbon [J]. CIESC Journal, 2022, 73(4): 1817-1825. |
[10] | Jiebing WANG, Jintong GAO, Zhenyuan XU. Experimental study on solar interfacial evaporation based on vapor pressure characteristics of different solutions [J]. CIESC Journal, 2022, 73(2): 663-671. |
[11] | Xuemei CHEN, Tong WANG, Yubo GAO, Dingcheng PENG, Yuting LUO. Efficient solar interfacial evaporation using laser-induced graphene [J]. CIESC Journal, 2022, 73(12): 5648-5659. |
[12] | Xinyu ZHANG, Xiaohong YANG, Yannan ZHANG, Jiakun XU, Xiao GUO, Rui TIAN. Heat transfer enhancement mechanism of phase change heat storage system based on two-dimensional gradient dendritic fins [J]. CIESC Journal, 2022, 73(10): 4399-4409. |
[13] | ZHANG Yijie, LIU Xing, CHEN Zhenwu, ZHANG Xiaochun, ZHOU Yong, QIU Jiandong, GU Wenbo, MA Tao. Sizing method and operating characteristics of distributed photovoltaic battery system [J]. CIESC Journal, 2021, 72(S1): 503-511. |
[14] | WU Yanpeng, LEI Xiaoyu, LU Yuming, CHEN Huini. Research progress of superhydrophobic anti-reflection films applied on transparent surfaces of solar devices [J]. CIESC Journal, 2021, 72(S1): 21-29. |
[15] | Yang LIU, Iqra AYUB, Fusheng YANG, Zhen WU, Zaoxiao ZHANG. Hydrogen thermal coupling transfer mechanism based on metal hydride high temperature heat storage technology [J]. CIESC Journal, 2021, 72(9): 4607-4615. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||