CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4607-4615.DOI: 10.11949/0438-1157.20210188
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yang LIU(),Iqra AYUB,Fusheng YANG,Zhen WU,Zaoxiao ZHANG()
Received:
2021-01-31
Revised:
2021-06-07
Online:
2021-09-05
Published:
2021-09-05
Contact:
Zaoxiao ZHANG
通讯作者:
张早校
作者简介:
刘洋(1994—),男,博士研究生,基金资助:
CLC Number:
Yang LIU, Iqra AYUB, Fusheng YANG, Zhen WU, Zaoxiao ZHANG. Hydrogen thermal coupling transfer mechanism based on metal hydride high temperature heat storage technology[J]. CIESC Journal, 2021, 72(9): 4607-4615.
刘洋, AYUB Iqra, 杨福胜, 吴震, 张早校. 基于金属氢化物高温蓄热的氢热耦合传递机理[J]. 化工学报, 2021, 72(9): 4607-4615.
Add to citation manager EndNote|Ris|BibTeX
Fig.11 Variation curves of average bed reaction fraction and heat transfer fluid output temperature with time under different wall heat transfer coefficients
壁面传热系数/ (W/(m2·K)) | 峰值点对应 时间/s | 峰值点对应 温度/℃ | 反应锋面形成 时间/s | 反应锋面形成 温度/℃ | 初始下降 斜率/(℃/s) | 有效输出 温度/℃ |
---|---|---|---|---|---|---|
1000 | 34.60 | 331.27 | 91.66 | 327.65 | 0.063 | 313.23 |
1500 | 34.60 | 333.87 | 84.71 | 329.84 | 0.080 | 313.67 |
2000 | 32.06 | 335.32 | 80.23 | 331.19 | 0.086 | 313.96 |
2500 | 32.06 | 336.26 | 76.31 | 332.59 | 0.088 | 314.03 |
3000 | 32.06 | 336.91 | 71.35 | 333.11 | 0.097 | 314.14 |
Table 1 Peak point, reaction front parameters and output temperature under different wall heat transfer coefficients
壁面传热系数/ (W/(m2·K)) | 峰值点对应 时间/s | 峰值点对应 温度/℃ | 反应锋面形成 时间/s | 反应锋面形成 温度/℃ | 初始下降 斜率/(℃/s) | 有效输出 温度/℃ |
---|---|---|---|---|---|---|
1000 | 34.60 | 331.27 | 91.66 | 327.65 | 0.063 | 313.23 |
1500 | 34.60 | 333.87 | 84.71 | 329.84 | 0.080 | 313.67 |
2000 | 32.06 | 335.32 | 80.23 | 331.19 | 0.086 | 313.96 |
2500 | 32.06 | 336.26 | 76.31 | 332.59 | 0.088 | 314.03 |
3000 | 32.06 | 336.91 | 71.35 | 333.11 | 0.097 | 314.14 |
Fig.12 Variation curves of average bed reaction fraction and heat transfer fluid output temperature with time under different bed thermal conductivity
床层热导率/ (W/(m·K)) | 峰值点对应 时间/s | 峰值点对应 温度/℃ | 有效输出 温度/℃ | 平台末端 时间/s | 反应完成 时间/s | 300℃对应 时间/s | 余热散热 时间/s | 散热段斜率/ (℃/s) |
---|---|---|---|---|---|---|---|---|
1.0 | 32.06 | 336.91 | 314.14 | 8113.33 | 8901.81 | 11204.18 | 2302.37 | 0.0061 |
1.5 | 32.06 | 338.56 | 317.92 | 6156.81 | 7073.56 | 9174.89 | 2101.33 | 0.0085 |
2.0 | 34.60 | 339.56 | 322.50 | 5311.92 | 6175.61 | 8040.73 | 1865.12 | 0.0121 |
2.5 | 33.64 | 340.24 | 325.43 | 4912.98 | 5672.79 | 7306.30 | 1633.51 | 0.0156 |
3.0 | 34.78 | 340.73 | 327.11 | 4201.35 | 5324.55 | 6869.36 | 1544.81 | 0.0175 |
Table 2 Peak point and reactor output parameters under different bed thermal conductivity
床层热导率/ (W/(m·K)) | 峰值点对应 时间/s | 峰值点对应 温度/℃ | 有效输出 温度/℃ | 平台末端 时间/s | 反应完成 时间/s | 300℃对应 时间/s | 余热散热 时间/s | 散热段斜率/ (℃/s) |
---|---|---|---|---|---|---|---|---|
1.0 | 32.06 | 336.91 | 314.14 | 8113.33 | 8901.81 | 11204.18 | 2302.37 | 0.0061 |
1.5 | 32.06 | 338.56 | 317.92 | 6156.81 | 7073.56 | 9174.89 | 2101.33 | 0.0085 |
2.0 | 34.60 | 339.56 | 322.50 | 5311.92 | 6175.61 | 8040.73 | 1865.12 | 0.0121 |
2.5 | 33.64 | 340.24 | 325.43 | 4912.98 | 5672.79 | 7306.30 | 1633.51 | 0.0156 |
3.0 | 34.78 | 340.73 | 327.11 | 4201.35 | 5324.55 | 6869.36 | 1544.81 | 0.0175 |
1 | Harries D N, Paskevicius M, Sheppard D A, et al. Concentrating solar thermal heat storage using metal hydrides[J]. Proceedings of the IEEE, 2012, 100(2): 539-549. |
2 | 纪军, 何雅玲. 太阳能热发电系统基础理论与关键技术战略研究[J]. 中国科学基金, 2009, 23(6): 331-336. |
Ji J, He Y L. Strategic research on basic theory and key technology of solar thermal power generation system[J]. Bulletin of National Natural Science Foundation of China, 2009, 23(6): 331-336. | |
3 | Gur I, Sawyer K, Prasher R. Searching for a better thermal battery[J]. Science, 2012, 335(6075): 1454-1455. |
4 | 汉京晓, 杨勇平, 侯宏娟. 太阳能热发电的显热蓄热技术进展[J]. 可再生能源, 2014, 32(7): 901-905. |
Han J X, Yang Y P, Hou H J. Review on sensible heat thermal energy storage in solar thermal generation[J]. Renewable Energy Resources, 2014, 32(7): 901-905. | |
5 | Koçak B, Fernandez A I, Paksoy H. Review on sensible thermal energy storage for industrial solar applications and sustainability aspects[J]. Solar Energy, 2020, 209: 135-169. |
6 | 白志蕊, 徐洪涛, 屈治国, 等. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587. |
Bai Z R, Xu H T, Qu Z G, et al. Experimental study of phase change sleeve tube thermal storage system performance during charging[J]. CIESC Journal, 2020, 71(4): 1580-1587. | |
7 | Lin Y X, Alva G, Fang G Y. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165: 685-708. |
8 | 鲍泽威, 吴震, Nyallang Nyamsi Serge, 等. 金属氢化物高温蓄热技术的研究进展[J]. 化工进展, 2012, 31(8): 1665-1670, 1676. |
Bao Z W, Wu Z, Serge N, et al. Progress of high temperature heat storage technology using metal hydrides[J]. Chemical Industry and Engineering Progress, 2012, 31(8): 1665-1670, 1676. | |
9 | 闫霆, 王如竹, 李廷贤. 热化学复合吸附储热循环的理论及实验[J]. 化工学报, 2016, 67: 311-317. |
Yan T, Wang R Z, Li T X. Theoretical analysis and experiment of thermochemical composite sorption heat storage cycle[J]. CIESC Journal, 2016, 67: 311-317. | |
10 | Wu S K, Zhou C, Doroodchi E, et al. A review on high-temperature thermochemical energy storage based on metal oxides redox cycle[J]. Energy Conversion and Management, 2018, 168: 421-453. |
11 | Ward P A, Corgnale C, Teprovich J A, et al. High performance metal hydride based thermal energy storage systems for concentrating solar power applications[J]. Journal of Alloys and Compounds, 2015, 645: S374-S378. |
12 | Corgnale C, Hardy B, Motyka T, et al. Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 821-833. |
13 | Sheppard D A, Buckley C E. The potential of metal hydrides paired with compressed hydrogen as thermal energy storage for concentrating solar power plants[J]. International Journal of Hydrogen Energy, 2019, 44(18): 9143-9163. |
14 | Urbanczyk R, Meggouh M, Moury R, et al. Demonstration of Mg2FeH6 as heat storage material at temperatures up to 550℃[J]. Applied Physics A, 2016, 122(4): 1-5. |
15 | Poupin L, Humphries T D, Paskevicius M, et al. An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage[J]. Sustainable Energy & Fuels, 2020, 4(1): 285-292. |
16 | Humphries T D, Sheppard D A, Li G Q, et al. Complex hydrides as thermal energy storage materials: characterisation and thermal decomposition of Na2Mg2NiH6[J]. Journal of Materials Chemistry A, 2018, 6(19): 9099-9108. |
17 | Wang D, Wang Y Q, Huang Z N, et al. Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor[J]. Energy, 2019, 173: 443-456. |
18 | Keshari V, Maiya M P. Design and investigation of hydriding alloy based hydrogen storage reactor integrated with a pin fin tube heat exchanger[J]. International Journal of Hydrogen Energy, 2018, 43(14): 7081-7095. |
19 | Ayub I, Nasir M S, Liu Y, et al. Numerical modeling and performance comparison of high-temperature metal hydride reactor equipped with bakery system for solar thermal energy storage[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31612-31631. |
20 | Tong L, Xiao J S, Yang T Q, et al. Complete and reduced models for metal hydride reactor with coiled-tube heat exchanger[J]. International Journal of Hydrogen Energy, 2019, 44(30): 15907-15916. |
21 | Bao Z W, Yan D, Zhu Z Z, et al. Performance investigation of metal hydride reactors adopting multilayer bed with graded content of expanded natural graphite for thermochemical heat storage[J]. Applied Thermal Engineering, 2021, 188: 116602. |
22 | Nyamsi S N, Lototskyy M, Tolj I. Selection of metal hydrides-based thermal energy storage: energy storage efficiency and density targets[J]. International Journal of Hydrogen Energy, 2018, 43(50): 22568-22583. |
23 | Jenne S P, Jana S, Palanisamy M. Thermal and compressor-driven metal hydride based coupled system for thermal storage, cooling and thermal upgradation[J]. Thermal Science and Engineering Progress, 2021, 21: 100800. |
24 | d'Entremont A, Corgnale C, Hardy B, et al. Simulation of high temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants[J]. International Journal of Hydrogen Energy, 2018, 43(2): 817-830. |
25 | Hahne E, Kallweit J. Thermal conductivity of metal hydride materials for storage of hydrogen: experimental investigation[J]. International Journal of Hydrogen Energy, 1998, 23(2): 107-114. |
26 | Sun D W, Deng S J. A theoretical model predicting the effective thermal conductivity in powdered metal hydride beds[J]. International Journal of Hydrogen Energy, 1990, 15(5): 331-336. |
27 | Matsushita M, Monde M, Mitsutake Y. Predictive calculation of the effective thermal conductivity in a metal hydride packed bed[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9718-9725. |
28 | Ishido Y, Kawamura M, Ono S. Thermal conductivity of magnesium-nickel hydride powder beds in a hydrogen atmosphere[J]. International Journal of Hydrogen Energy, 1982, 7(2): 173-182. |
29 | 顾清之, 赵长颖. 镁-氢化镁热化学蓄热系统数值分析[J]. 化工学报, 2012, 63(12): 3776-3783. |
Gu Q Z, Zhao C Y. Numerical study on Mg/MgH2 thermochemical heat storage system[J]. CIESC Journal, 2012, 63(12): 3776-3783. | |
30 | Shen D, Zhao C Y. Thermal analysis of exothermic process in a magnesium hydride reactor with porous metals[J]. Chemical Engineering Science, 2013, 98: 273-281. |
31 | Malleswararao K N A, Srinivasa Murthy S, et al. Performance prediction of a coupled metal hydride based thermal energy storage system[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16239-16253. |
32 | Chaise A, de Rango P, Marty P, et al. Experimental and numerical study of a magnesium hydride tank[J]. International Journal of Hydrogen Energy, 2010, 35(12): 6311-6322. |
33 | Pons M, Dantzer P. Determination of thermal conductivity and wall heat transfer coefficient of hydrogen storage materials[J]. International Journal of Hydrogen Energy, 1994, 19(7): 611-616. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[7] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[8] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[9] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[10] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[11] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[12] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[13] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||