CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4680-4688.DOI: 10.11949/j.issn.0438-1157.20190885
• Process system engineering • Previous Articles Next Articles
Received:
2019-07-25
Revised:
2019-08-15
Online:
2019-12-05
Published:
2019-12-05
Contact:
Zhiyun ZOU
通讯作者:
邹志云
作者简介:
于蒙(1987—),男,博士研究生,助理研究员,CLC Number:
Meng YU, Zhiyun ZOU. Electric heated water bath cascade control system research based on improved differential evolution algorithm-radial basis function neural network[J]. CIESC Journal, 2019, 70(12): 4680-4688.
于蒙, 邹志云. 基于改进差分进化算法-径向基神经网络的电热水浴串级控制系统研究[J]. 化工学报, 2019, 70(12): 4680-4688.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20190885
数据状态 | 绝对误差积分 |
---|---|
理想情况 | 0.01149 |
有噪声 | 0.08365 |
滤波后 | 0.01298 |
Table 1 Tracking absolute error under different states
数据状态 | 绝对误差积分 |
---|---|
理想情况 | 0.01149 |
有噪声 | 0.08365 |
滤波后 | 0.01298 |
1 | 刘凤萍 . 电热恒温水浴锅温度场(温度均匀性)测量值的不确定度评定[J]. 计量与测试技术, 2016, 43(1): 84-85. |
Liu F P . Evaluation of uncertainty about measurement results of electric heating constant temperature water-bath temperature uniformity[J]. Metrology & Measurement Technique, 2016, 43(1): 84-85. | |
2 | 王志甄, 邹志云 .电热水浴装置的MPC-PID串级控制研究[J]. 石油化工自动化, 2018, 54(3): 36-40. |
Wang Z Z , Zou Z Y . Research on MPC-PID cascade control of electric-heated water bath device[J]. Automation in Petro-Chemical Industry, 2018, 54(3): 36-40. | |
3 | Karthikeyan R , Manickavasagam K , Tripathi S , et al . Neuro-fuzzy-based control for parallel cascade control[J]. Chemical Product and Process Modeling, 2013, 8(1): 15-25. |
4 | Sakthivel R , Sathishkumar M , Ren Y , et al . Fault-tolerant sampled-data control of singular networked cascade control systems[J]. International Journal of Systems Science, 2017, 48(10): 2079-2090. |
5 | Hu Y F , Chen C H , Wu H C , et al . Study on structural optimization design and cascade PID control of maglev actuator for active vibration isolation system[J]. Journal of Vibration and Control, 2018, 24(10): 1829-1847. |
6 | Khalil H K . Cascade high-gain observers in output feedback control[J]. Automatica, 2017, 80(4): 110-118. |
7 | 林巍, 王亚刚 . 串级控制系统闭环辨识及PID参数整定[J]. 控制工程, 2018, 25(1): 11-18. |
Lin W , Wang Y G . Modeling for cascade control systems based on frequency domain and PID parameter tuning[J]. Control Engineering of China, 2018, 25(1): 11-18. | |
8 | 柴杰, 江青茵, 曹志凯 . RBF神经网络的函数逼近能力及其算法[J]. 模式识别与人工智能, 2002, 15(3): 310-316. |
Chai J , Jiang Q Y , Cao Z K . Function approximation capability and algorithms of RBF neural networks[J]. Pattern Recognition and Artificial Intelligence, 2002, 15(3): 310-316. | |
9 | Behnam T , Fariba Z , Houman Z , et al . Utilization of RBF-ANN as a novel approach for estimation of asphaltene inhibition efficiency[J]. Petroleum Science and Technology, 2018, 36(16): 1216-1221. |
10 | 丰会萍, 胡亚南, 李明辉, 等 . 基于RBF-PID的多功能包装机热封温度控制[J]. 制造业自动化, 2018, 40(1): 16-20. |
Feng H P , Hu Y N , Li M H , et al . Temperature control of heat-sealing of multi-function packaging machine based on RBF-PID[J]. Manufacturing Automation, 2018, 40(1): 16-20. | |
11 | 郑太雄, 潘松, 李永福,等 . 基于黑箱模型和RBF-PID的HCCI发动机燃烧正时控制[J]. 仪器仪表学报, 2015, 36(11): 2510-2518. |
Zheng T X , Pan S , Li Y F , et al . Combustion timing control of homogeneous charge compression ignition engine based on RBF-PID and black-box model[J]. Chinese Journal of Scientific Instrument, 2015, 36(11): 2510-2518. | |
12 | Lionel L S , Godpromesse K , Andrew M F . A new static synchronous series compensator control strategy based on RBF neuro-sliding mode technique for power flow control and DC voltage regulation[J]. Electric Power Components and Systems, 2018, 46(4): 456-471. |
13 | Tu W P , Yang Y H , Du B , et al . Towards a real-time production of immersive spatial audio of high individuality with an RBF neural network[J]. Journal of Parallel and Distributed Computing, 2019, 13(1): 124-131. |
14 | Yang H J , Liu J K . An adaptive RBF neural network control method for a class of nonlinear systems[J]. Automatica, 2018, 5(2): 457-462. |
15 | Alireza Z , Afshin T . Utilization of the RBF network to model the nucleate pool boiling heat transfer properties of refrigerant-oil mixtures with nanoparticles[J]. Journal of Molecular Liquids, 2017, 24(7): 252-261. |
16 | Moscoso M , Bayona V , Kindelan M . Gaussian RBF-FD weights and its corresponding local truncation errors[J]. Engineering Analysis with Boundary Elements, 2012, 36(9): 1361-1369. |
17 | 邓凯文, 陈海昕 . 基于差分进化和RBF响应面的混合优化算法[J]. 力学学报, 2017, 49(2): 441-455. |
Deng K W , Chen H X . Hybrid optimization algorithm based on differential evolutio and RBF response surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 441-455. | |
18 | 薛晓岑, 向文国, 吕剑虹 . 基于差分进化与 RBF 神经网络的热工过程辨识[J]. 东南大学学报(自然科学版), 2014, (4): 769-774. |
Xue X C , Xiang W G , Lyu J H . Thermal process identification based on differential evolution and RBF neural network[J]. Journal of Southeast University (Natural Science Edition), 2014, (4): 769-774. | |
19 | Ji N , Xu D Z , Liu F . A novel adaptive neural network constrained control for solid oxide fuel cells via dynamic anti-windup[J]. Neurocomputing, 2016, 21(9): 134-142. |
20 | Liu K , Wu Y , Zhu T M , et al . Improved RBF network torque control in flexible manipulator actuated by PMAs[J]. Robotica, 2019, 37(2): 264-280. |
21 | Storn R . On the usage of differential evolution for function optimization[C]//Proceedings of North American Fuzzy Information Processing. Berkeley, CA, USA, 1996. |
22 | Li Y C , Li Z P , Yang L Q , et al . An improved quantum differential evolution algorithm for optimization and control in power systems including DGs[J]. Automatica, 2017, 43(7): 1280-1288. |
23 | Dong Y , Zhao R . Solve train stowage planning problem of steel coil using a pointer-based discrete differential evolution[J]. International Journal of Production Research, 2018, 56(22): 6937-6955. |
24 | Subrat K N , Pravat K R , Alok J , et al . Elitism-based multi-objective differential evolution with extreme learning machine for feature selection: a novel searching technique[J]. Connection Science, 2018, 30(4): 362-387. |
25 | Addawe R C , Addawe J M , Sueño M R K , et al . Differential evolution-simulated annealing for multiple sequence alignment[J]. Journal of Physics: Conference Series, 2017, 8(1): 120-131. |
26 | Ponnuthurai N , Mostafa Z . Population topologies for particle swarm optimization and differential evolution[J]. Swarm and Evolutionary Computation, 2018, 39(4): 24-35. |
27 | 刘金琨 . 先进PID 控制MATLAB 仿真[M]. 北京: 电子工业出版社, 2016: 301-319. |
Liu J K . Advanced PID Control MATLAB Simulation[M]. Beijing: Electronic Industry Press, 2016: 301-319. | |
28 | Bourmaud G , Megret R , Arnaudon M , et al . Continuous-discrete extended Kalman filter on matrix lie groups using concentrated gaussian distributions [J]. Journal of Mathematical Imaging and Vision, 2015, 51(1): 209-228. |
29 | Torabi H , Pariz N , Karimpour A . A novel cubature statistically linearized Kalman filter for fractional-order nonlinear discrete-time stochastic systems[J]. Journal of Vibration and Control, 2018, 24(24): 5880-5897. |
30 | Daniel T , Gary V . Attribution of hedge fund returns using a Kalman filter[J]. Applied Economics, 2018, 50(9): 1043-1058. |
31 | Zhao Y B , Li X F , Wang Y , et al . Biased constrained hybrid Kalman filter for range-based indoor localization[J]. IEEE Sensors Journal, 2018, 18(4): 1647-1655. |
32 | 吴晓明, 马立廷, 郑协, 等 . 改进的RBF神经网络PID 算法在电液伺服系统中应用[J]. 机床与液压, 2015, 43(11): 63-66. |
Wu X M , Ma L T , Zheng X , et al . Improved RBF neural network PID control strategy used in electro-hydraulic servo system[J]. Machine Tool & Hydraulics, 2015, 43(11): 63-66. | |
33 | Xie Y F , Yu J J , Xie S W , et al . On-line prediction of ferrous ion concentration in goethite process based on self-adjusting structure RBF neural network[J]. Neural Networks, 2019, 5(2): 132-141. |
34 | Kwedlo W , Bandurski K . A parallel differential evolution algorithm [C]//Parallel Computing in Electrical Engineering.IEEE, 2006, 12(9): 454-467. |
35 | Sento A , Kitjaidure Y . Neural network controller based on PID using an extended Kalman filter algorithm for multi⁃variable non⁃linear control system [C]//The Eighth International Conference on Advanced Computational Intelligence. Chiang Mai: IEEE, 2016: 302⁃309. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[6] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[7] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[8] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[9] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[10] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[11] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[12] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[13] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[14] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[15] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||