1 |
Linnhoff B , Flower J R . Synthesis of heat exchanger networks(Ⅰ): Systematic generation of energy optimal networks[J]. AIChE Journal, 1978, 24(4): 633-642.
|
2 |
都健, 李春妮, 陈理 .基于虚拟温度法的间歇过程换热网络结构优化[J]. 化工学报, 2010, 61(12): 3162-3166.
|
|
Du J , Li C N , Chen L . Structure optimization of heat exchanger network for batch processes based on pseudo-temperature[J]. CIESC Journal, 2010, 61(12): 3162-3166.
|
3 |
Papoulias S A , Grossmann I E . A structural optimization approach in process synthesis(Ⅱ): Heat recovery networks[J]. Computers & Chemical Engineering, 1983, 7(6): 707-721.
|
4 |
Yee T F , Grossmann I E . Simultaneous optimization models for heat integration(Ⅱ): Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184.
|
5 |
Huang Y L , Fan L T . Analysis of a work exchanger network[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3528-3538.
|
6 |
Liu G , Hua Z , Shen R , et al . A graphical method for integrating work exchange network[J]. Applied Energy, 2014, 114(2): 588-599.
|
7 |
Zhuang Y , Liu L L , Zhang L , et al . Upgraded graphical method for the synthesis of direct work exchanger networks[J]. Industrial & Engineering Chemistry Research, 2017, 56: 14304-14315.
|
8 |
庄钰, 刘琳琳, 李继龙, 等 . 基于转运模型的功交换网络综合[J]. 化工进展, 2015, 34(4): 952-956
|
|
Zhuang Y , Liu L L , Li J L , et al . Synthesis of work exchange network based on transshipment model[J]. Chemical Industry & Engineering Progress, 2015, 34(4): 952-956.
|
9 |
Zhuang Y , Liu L L , Zhang L , et al . Direct work exchanger network synthesis of isothermal process based on improved transshipment model[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81: 295-304.
|
10 |
Zhuang Y , Liu L L , Liu Q L , et al . Step-wise synthesis of work exchange networks involving heat integration based on the transshipment model[J]. Chinese Journal of Chemical Engineering, 2017, 25(8): 1052-1060. .
|
11 |
Zhuang Y , Liu L , Zhang L , et al . An extended superstructure modeling method for simultaneous synthesis of direct work exchanger networks[J]. Chemical Engineering Research & Design, 2019, 144(1): 258-271.
|
12 |
Razib M S , Hasan M M F , Karimi I A . Pressure management using optimal compressor networks[C]// 8th World Congress of Chemical Engineering: Incorporating the 59th Canadian Chemical Engineering Conference and the 24th Interamerican Congress of Chemical Engineering. 2009.
|
13 |
Razib M S , Hasan M M F , Karimi I A . Preliminary synthesis of work exchange networks[J]. Computers & Chemical Engineering, 2012, 37: 262-277.
|
14 |
周华, 刘桂莲, 冯霄 . 考虑效率的功交换网络问题表格法[J]. 化工学报, 2011, 62(6): 1600-1605.
|
|
Zhou H , Liu G L , Feng X . Problem table method for work exchange network with efficiency considered[J]. CIESC Journal, 2011, 62(6): 1600-1605.
|
15 |
陈慧, 冯霄 . 考虑经济性的功量交换网络的最优匹配[J]. 清华大学学报(自然科学版), 2012, 52(3): 298-302.
|
|
Chen H , Feng X . Optimized work exchange networks with economic consideration[J]. J. Tsinghua Univ. (Sci. & Tech.), 2012, 52(3: 298-302.
|
16 |
Zhuang Y , Liu L L , Zhang L , et al . Synthesis of indirect work exchange networks considering both isothermal and adiabatic process together with exergy analysis[J]. Chinese Journal of Chemical Engineering, 2018, 26(8): 1644-1652.
|
17 |
Aspelund A , Berstad D O , Gundersen T . An extended pinch analysis and design procedure utilizing pressure based exergy for subambient cooling[J]. Applied Thermal Engineering, 2007, 27(16): 2633-2649.
|
18 |
Gundersen T , Berstad D O , Aspelund A . Extending pinch analysis and process integration into pressure and fluid phase considerations[J]. Chemical Engineering Transactions, 2009, 18: 33-38.
|
19 |
Fu C , Gundersen T . Sub-ambient heat exchanger network design including expanders[J]. Chemical Engineering Science, 2015, 138: 712-729.
|
20 |
Fu C , Gundersen T . Integrating expanders into heat exchanger networks above ambient temperature[J]. AIChE Journal, 2015, 61(10): 3404-3422.
|
21 |
Fu C , Gundersen T . Sub-ambient heat exchanger network design including compressors[J]. Chemical Engineering Science, 2015, 137: 631-645.
|
22 |
Fu C , Gundersen T . Integrating compressors into heat exchanger networks above ambient temperature[J]. AIChE Journal, 2015, 61(11): 3770-3785.
|
23 |
Wechsung A , Aspelund A , Gundersen T , et al . Synthesis of heat exchanger networks at subambient conditions with compression and expansion of process streams[J]. AIChE Journal, 2011, 57(8): 2090-2108.
|
24 |
Onishi V C , Ravagnani M A S S , Caballero J A . Simultaneous synthesis of work exchange networks with heat integration[J]. Chemical Engineering Science, 2014, 112: 87-107.
|
25 |
Onishi V C , Ravagnani M A S S , Caballero J A . Simultaneous synthesis of heat exchanger networks with pressure recovery: optimal integration between heat and work[J]. AIChE Journal, 2014, 60(3): 893-908.
|
26 |
Onishi V C , Ravagnani M A S S , Jiménez L , et al . Multi-objective synthesis of work and heat exchange networks: optimal balance between economic and environmental performance[J]. Energy Conversion Management, 2017, 140: 192-202.
|
27 |
Huang K F , Karimi I A . Work-heat exchanger network synthesis(WHENS)[J]. Energy, 2016, 113: 1006-1017.
|
28 |
Nair S K , Rao H N , Karimi I A . Framework for work-heat exchange network synthesis [J]. AIChE Journal, 2018, 64(7): 2472-2485.
|
29 |
Onishi V C , Quirante N , Ravagnani M A S S , et al . Optimal synthesis of work and heat exchangers networks considering unclassified process streams at sub and above-ambient conditions[J]. Applied Energy, 2018, 224: 567-581.
|
30 |
Yu H S , Fu C , Vikse M , et al . Identifying optimal thermodynamic paths in work and heat exchange network synthesis[J]. AIChE Journal, 2019, 65(2): 549-561.
|
31 |
Zhuang Y , Zhang L , Liu L L , et al . Simultaneous synthesis of WHEN based on superstructure modelling considering thermodynamic and economic factors[J]. Computers Aided Chemical Engineering, 2018, 44: 1033-1038.
|