CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 602-613.DOI: 10.11949/0438-1157.20191275
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Haijun ZHOU(),Yuanquan XIONG()
Received:
2019-10-25
Revised:
2019-12-04
Online:
2020-02-05
Published:
2020-02-05
Contact:
Yuanquan XIONG
通讯作者:
熊源泉
作者简介:
周海军(1986—),男,博士研究生,基金资助:
CLC Number:
Haijun ZHOU, Yuanquan XIONG. Simulation study on influence of supplementary gas on dense-phase pneumatic conveying in horizontal pipe under high pressure[J]. CIESC Journal, 2020, 71(2): 602-613.
周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
Add to citation manager EndNote|Ris|BibTeX
No. | 补充风流量,Qs /(m3/h) | 表观气速,Ug/(m/s) | 固相质量流量,Ms/(kg/s) | 进口固相体积浓度,αs,in | 进口固相平均速度,us,inlet/(m/s) | 出口气相压力,Pout/MPa |
---|---|---|---|---|---|---|
1 | 0.40 | 4.71 | 0.213 | 0.318 | 4.43 | 2.91 |
2 | 0.60 | 5.62 | 0.206 | 0.286 | 5.30 | 2.91 |
3 | 0.80 | 6.43 | 0.194 | 0.245 | 6.09 | 2.92 |
4 | 1.00 | 7.24 | 0.181 | 0.199 | 6.79 | 2.93 |
5 | 1.20 | 8.10 | 0.168 | 0.184 | 7.72 | 2.93 |
Table 1 Conveying experiment parameters
No. | 补充风流量,Qs /(m3/h) | 表观气速,Ug/(m/s) | 固相质量流量,Ms/(kg/s) | 进口固相体积浓度,αs,in | 进口固相平均速度,us,inlet/(m/s) | 出口气相压力,Pout/MPa |
---|---|---|---|---|---|---|
1 | 0.40 | 4.71 | 0.213 | 0.318 | 4.43 | 2.91 |
2 | 0.60 | 5.62 | 0.206 | 0.286 | 5.30 | 2.91 |
3 | 0.80 | 6.43 | 0.194 | 0.245 | 6.09 | 2.92 |
4 | 1.00 | 7.24 | 0.181 | 0.199 | 6.79 | 2.93 |
5 | 1.20 | 8.10 | 0.168 | 0.184 | 7.72 | 2.93 |
自然堆积固相体积浓度,αs,b | 全水分, Mc | 密度,ρs/(kg/m3) | 颗粒平均粒径,ds/μm | 颗粒刚度,kn/(Pa?m) |
---|---|---|---|---|
0.50 | 5.45% | 1496 | 204.3 | 3000 |
Table 2 Main physical properties of pulverized lignite
自然堆积固相体积浓度,αs,b | 全水分, Mc | 密度,ρs/(kg/m3) | 颗粒平均粒径,ds/μm | 颗粒刚度,kn/(Pa?m) |
---|---|---|---|---|
0.50 | 5.45% | 1496 | 204.3 | 3000 |
αs,max | ess | ?i | esw | ? | μw | a |
---|---|---|---|---|---|---|
0.60 | 0.8 | 32.0° | 0.5 | 1.0×10-5 | 0.5 | 1.8×10-6 |
Table 3 Mathematical model parameters
αs,max | ess | ?i | esw | ? | μw | a |
---|---|---|---|---|---|---|
0.60 | 0.8 | 32.0° | 0.5 | 1.0×10-5 | 0.5 | 1.8×10-6 |
网格划分规格 | 端面格数 | 轴向网格尺寸/mm | 总网格数/万 | 水平管模拟压降/kPa | 水平管试验压降/kPa |
---|---|---|---|---|---|
Mesh A | 180 | 2 | 21.60 | 3.84 | 4.14 |
Mesh B | 288 | 1.5 | 46.08 | 3.91 | |
Mesh C | 420 | 1.25 | 80.64 | 4.07 | |
Mesh D | 576 | 1 | 138.24 | 4.08 |
Table 4 Predicted pressure drop of horizontal pipe with different grid scale
网格划分规格 | 端面格数 | 轴向网格尺寸/mm | 总网格数/万 | 水平管模拟压降/kPa | 水平管试验压降/kPa |
---|---|---|---|---|---|
Mesh A | 180 | 2 | 21.60 | 3.84 | 4.14 |
Mesh B | 288 | 1.5 | 46.08 | 3.91 | |
Mesh C | 420 | 1.25 | 80.64 | 4.07 | |
Mesh D | 576 | 1 | 138.24 | 4.08 |
1 | 华贲. 低碳时代石油化工产业资源与能源走势[J]. 化工学报, 2013, 64(1): 76-83. |
Hua B. Resources and energy trends of petrochemical industry in low carbon era[J]. CIESC Journal, 2013, 64(1): 76-83. | |
2 | Lu P, Yang P J, Zheng X W, et al. Pilot-scale experimental study on phase diagrams of pressurized pneumatic conveying with pulverized coal[J]. Energy & Fuels, 2017, 31(9): 10260-10266. |
3 | 鹿鹏, 姜瑞雪, 张桂臣, 等. 加压气力输送流型与压力脉动Hilbert-Huang变换的关联研究[J]. 中国电机工程学报, 2014, 34(5): 718-723. |
Lu P, Jiang R X, Zhang G C, et al. Flow regimes of pressurized pneumatic conveying and association study based on Hilbert-Huang transform[J]. Proceedings of the CSEE, 2014, 34(5): 718-723. | |
4 | 朱立平, 彭小敏, 黄飞, 等. 表观气速对密相气力输送流型影响的模拟[J]. 化工学报, 2012, 63(2): 470-478. |
Zhu L P, Peng X M, Huang F, et al. Numerical simulation of flow patterns in dense pneumatic conveying at different superficial gas velocities[J]. CIESC Journal, 2012, 63(2): 470-478. | |
5 | Sun S S, Yuan Z L, Peng Z B, et al. Computational investigation of particle flow characteristics in pressurised dense phase pneumatic conveying systems[J]. Powder Technology, 2018, 329: 241-251. |
6 | 谢灼利, 黎明, 张政. 水平管气力输送的数值模拟研究[J]. 高校化学工程学报, 2006, 20(3): 331-337. |
Xie Z L, Li M, Zhang Z. Numerical simulation of horizontal pneumatic conveying[J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(3): 331-337. | |
7 | Pu W H, Zhao C S, Xiong Y Q, et al. Numerical simulation on dense phase pneumatic conveying of pulverized coal in horizontal pipe at high pressure[J]. Chem. Eng. Sci., 2010, 65(8): 2500-2512. |
8 | 蒲文灏, 赵长遂, 熊源泉, 等. 水平管加压密相煤粉气力输送数值模拟[J]. 化工学报, 2008, 59(10): 2601-2607. |
Pu W H, Zhao C S, Xiong Y Q, et al. Numerical simulation of dense pneumatic conveying of pulverized coal in horizontal pipe at high pressure[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(10): 2601-2607. | |
9 | Jenkins J T, Savage S B. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles[J]. J. Fluid Mech., 1983, 130: 187-202. |
10 | Savage S B, Jeffrey D J. The stress tensor in a granular flow at high shear rates[J]. J. Fluid Mech., 1981, 110: 255-272. |
11 | Wang Y, Williams K, Jones M, et al. CFD simulation methodology for gas-solid flow in bypass pneumatic conveying—a review[J]. Appl. Therm. Eng., 2017, 125: 185-208. |
12 | Chialvo S, Sun J, Sundaresan S. Bridging the rheology of granular flows in three regimes[J]. Phys. Rev. E., 2012, 85(2): 021305. |
13 | Makkawi Y, Ocone R. A model for gas-solid flow in a horizontal duct with a smooth merge of rapid-intermediate-dense flows[J]. Chem. Eng. Sci., 2006, 61(13): 4271-4281. |
14 | Tardos G I, Mcnamara S, Talu I. Slow and intermediate flow of a frictional bulk powder in the Couette geometry[J]. Powder Technology, 2003, 131(1): 23-39. |
15 | Vescovi D, di Prisco C, Berzi D. From solid to granular gases: the steady state for granular materials[J]. Int. J. Numer. Anal. Methods Geomech., 2013, 37(17): 2937-2951. |
16 | 陈程, 祁海鹰. EMMS曳力模型及其颗粒团模型的构建和检验[J]. 化工学报, 2014, 65(6): 2003-2012. |
Chen C, Qi H Y. Development and validation of cluster and EMMS drag model[J]. CIESC Journal, 2014, 65(6): 2003-2012. | |
17 | Peng C, Lyu M, Wang S N, et al. Effect of fractal gas distributor on the radial distribution of particles in circulating turbulent fluidized bed[J]. Powder Technology, 2018, 326: 443-453. |
18 | Xu G L, Lu P, Liang C, et al. Effect of powder properties on discharge characteristics of cohesive carbonaceous fuel powders from a top discharge blow tank at high pressure[J]. Chem. Eng. Commun., 2018, 205(11): 1604-1621. |
19 | 沈湘林, 熊源泉. 煤粉加压密相输送实验研究[J]. 中国电机工程学报, 2005, 25(24): 103-107. |
Shen X L, Xiong Y Q. Experimental study on dense-phase pneumatic conveying of pulverized coal at high pressures[J]. Proceedings of the CSEE, 2005, 25(24): 103-107. | |
20 | 贺春辉, 陈先梅, 倪红亮, 等. 发送罐出料方式对煤粉高压密相气力输送特性的影响[J]. 中国电机工程学报, 2012, 32(23): 32-39. |
He C H, Chen X M, Ni H L, et al. Influences of discharge types of blow tank on dense phase pneumatic conveying of pulverized coal at high pressure[J]. Proceedings of the CSEE, 2012, 32(23): 32-39. | |
21 | Savage S B. Analyses of slow high-concentration flows of granular materials[J]. J. Fluid Mech., 1998, 377: 1-26. |
22 | Lee C H, Huang Z H, Chiew Y M. A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column[J]. Physics of Fluids, 2015, 27(11): 113303. |
23 | Srivastava A, Sundaresan S. Analysis of a frictional-kinetic model for gas-particle flow[J]. Powder Technology, 2003, 129(1/2/3): 72-85. |
24 | Johnson P C, Jackson P R. Frictional-collisional equations of motion for participate flows and their application to chutes[J]. J. Fluid Mech., 1990, 210: 501-535. |
25 | Berzi D, di Prisco C G, Vescovi D. Constitutive relations for steady, dense granular flows[J]. Phys. Rev. E., 2011, 84(3): 031301. |
26 | Nikolopoulos A, Nikolopoulos N, Charitos A, et al. High-resolution 3-D full-loop simulation of a CFB carbonator cold model[J]. Chem. Eng. Sci., 2013, 90(10): 137-150. |
27 | Schneiderbauer S, Aigner A, Pirker S. A comprehensive frictional-kinetic model for gas-particle flows: analysis of fluidized and moving bed regimes[J]. Chem. Eng. Sci., 2012, 80(10): 279-292. |
28 | Lyu S H, Li X L, Li G H. Effects of momentum transfer on particle dispersions of dense gas-particle two-phase turbulent flows[J]. Adv. Powder Technol., 2014, 25(1): 274-280. |
29 | Mckeen T, Pugsley T. Simulation and experimental validation of a freely bubbling bed of FCC catalyst[J]. Powder Technology, 2003, 129(1): 139-152. |
30 | Klinzing G E, Rizk F, Marcus R, et al. Pneumatic conveying of solids: a theoretical and practical approach[J]. Ind. Eng. Chem. Res., 2011, 55(39): 10455-10464. |
31 | Johnson P C, Jackson R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing[J]. J. Fluid Mech., 1987, 176: 67-93. |
32 | Geldart D, Ling S J. Dense phase conveying of fine coal at high total pressures[J]. Powder Technology, 1990, 62(3): 243-252. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[4] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[9] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[12] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[15] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||