CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4760-4769.DOI: 10.11949/0438-1157.20190729
• Process system engineering • Previous Articles Next Articles
Received:
2019-06-27
Revised:
2019-08-09
Online:
2019-12-05
Published:
2019-12-05
Contact:
Zewen DUAN
通讯作者:
段泽文
作者简介:
王通(1976—),男,博士,副教授,基金资助:
CLC Number:
Tong WANG, Zewen DUAN. Soft sensor modeling for dynamic liquid level of oil well based on fuzzy inference adaptive updating[J]. CIESC Journal, 2019, 70(12): 4760-4769.
王通, 段泽文. 基于模糊评估自适应更新的油井动液面软测量建模[J]. 化工学报, 2019, 70(12): 4760-4769.
Add to citation manager EndNote|Ris|BibTeX
NB | NS | ZO | PS | PB | |
---|---|---|---|---|---|
NB | NB | NB | NB | NS | ZO |
NS | NB | NB | NS | ZO | PS |
ZO | NS | NS | ZO | PS | PS |
PS | ZO | ZO | PS | PB | PB |
PB | PS | PS | PB | PB | PB |
Table 1 A fuzzy expert rule for trend of liquid change inference u
NB | NS | ZO | PS | PB | |
---|---|---|---|---|---|
NB | NB | NB | NB | NS | ZO |
NS | NB | NB | NS | ZO | PS |
ZO | NS | NS | ZO | PS | PS |
PS | ZO | ZO | PS | PB | PB |
PB | PS | PS | PB | PB | PB |
井组 | 算法 | MAE | RMSE |
---|---|---|---|
相同井组 | 支持向量机算法 | 19.0563 | 24.3677 |
AdaBoost算法 | 16.2779 | 21.1045 | |
改进多工况模型算法 | 12.4856 | 16.3584 | |
不同井组 | 支持向量机算法 | 26.8274 | 36.0817 |
AdaBoost算法 | 19.9813 | 28.4624 | |
改进多工况模型算法 | 16.9569 | 25.3182 |
Table 2 Predicted error of different algorithm
井组 | 算法 | MAE | RMSE |
---|---|---|---|
相同井组 | 支持向量机算法 | 19.0563 | 24.3677 |
AdaBoost算法 | 16.2779 | 21.1045 | |
改进多工况模型算法 | 12.4856 | 16.3584 | |
不同井组 | 支持向量机算法 | 26.8274 | 36.0817 |
AdaBoost算法 | 19.9813 | 28.4624 | |
改进多工况模型算法 | 16.9569 | 25.3182 |
算法 | MAE | RMSE |
---|---|---|
静态模型 | 44.5780 | 57.5668 |
动态模型 | 34.6773 | 46.8661 |
Table 3 Predicted error of different model(different production measures)
算法 | MAE | RMSE |
---|---|---|
静态模型 | 44.5780 | 57.5668 |
动态模型 | 34.6773 | 46.8661 |
算法 | MAE | RMSE |
---|---|---|
静态模型 | 30.5454 | 44.5067 |
动态模型 | 23.0401 | 35.8512 |
Table 4 Predicted error of different model(different production conditions)
算法 | MAE | RMSE |
---|---|---|
静态模型 | 30.5454 | 44.5067 |
动态模型 | 23.0401 | 35.8512 |
1 | 李颍川. 采油工程 [M]. 2版. 北京: 石油工业出版社, 2009: 108-114. |
Li Y C. Petroleum Engineering [M]. 2nded. Beijing: Petroleum Industry Press, 2009: 108-114. | |
2 | 王通, 高宪文, 刘文芳. 自适应软测量方法在动液面预测中的研究与应用[J]. 化工学报, 2014, 65(12): 4898-4904. |
Wang T, Gao X W, Liu W F. Adaptive soft sensor method and application in determination of dynamic fluid levels[J]. CIESC Journal, 2014, 65(12): 4898-4904. | |
3 | Li X Y, Gao X W, Cui Y B, et al. Dynamic liquid level modeling of sucker-rod pumping systems based on Gaussian process regression[C]//Wang H Y, Yuen S Y, Wang L P, et al. 2013 Ninth International Conference on Natural Computation(ICNC). Shenyang, China: IEEE, 2013: 917-922. |
4 | 李翔宇, 高宪文, 李琨, 等. 基于多源信息特征融合的抽油井动液面集成软测量建模[J]. 化工学报, 2016, 67(6): 2469-2479. |
Li X Y, Gao X W, Li K, et al. Ensemble soft sensor modeling for dynamic liquid level of oil well based on multi-source information feature fusion[J]. CIESC Journal, 2016, 67(6): 2469-2479. | |
5 | 李琨, 韩莹, 黄海礁. 基于IBH-LSSVM的混沌时间序列预测及其在抽油井动液面短期预测中的应用[J]. 信息与控制, 2016, 45(2): 241-247+256. |
Li K, Han Y, Huang H J. Chaotic time series prediction based on IBH-LSSVM and its application to short-term prediction of dynamic fluid level in oil wells[J]. Information and Control, 2016, 45(2): 241-247+256. | |
6 | 王通, 高宪文, 刘文芳. 基于改进即时学习算法的动液面软测量建模[J]. 东北大学学报(自然科学版), 2015, 36(7): 918-922. |
Wang T, Gao X W, Liu W F. Soft sensor for determination of dynamic fluid levels based on enhanced just-in-time learning algorithm[J]. Journal of Northeastern University( Natural Science), 2015, 36(7): 918-922. | |
7 | 汪世杰, 王振雷, 王昕. 基于JIT-MOSVR的软测量方法及应用[J]. 化工学报, 2017, 68(3): 947-955. |
Wang S J, Wang Z L, Wang X. Soft-sensor based on JIT-MOSVR and its application[J]. CIESC Journal, 2017, 68(3): 947-955. | |
8 | 王通, 段泽文, 李琨. 基于改进AdaBoost的油井动液面自适应集成建模[J]. 电子测量与仪器学报, 2017, 31(8): 1342-1348. |
Wang T, Duan Z W, Li K. Adaptive ensemble modeling for dynamic liquid level of oil well based on improved AdaBoost method[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(8): 1342-1348. | |
9 | 熊伟丽, 李妍君, 姚乐, 等. 一种动态校正的AGMM-GPR多模型软测量建模方法[J]. 大连理工大学学报, 2016, 56(1): 77-85. |
Xiong W L, Li Y J, Yao L, et al. A dynamically corrected AGMM-GPR multi-model soft sensor modeling method[J]. Journal of Dalian University of Technology, 2016, 56(1): 77-85. | |
10 | 郭晨龙, 仇振安, 孙瑞彬. 基于增量学习的合成孔径雷达目标识别算法[J]. 电光与控制, 2019, 26(1): 31-33. |
Guo C L, Qiu Z A, Sun R B. Synthetic aperture radar target recognition based on incremental learning algorithm[J]. Electronics Optics & Control, 2019, 26(1): 31-33. | |
11 | 苏志刚, 王培红, 于向军, 等. 中储式制粉系统出力在线监测软测量建模[J]. 中国电机工程学报, 2007, 27(29): 90-95. |
Su Z G, Wang P H, Yu X J, et al. Soft sensor modeling for on-line monitoring the capacity of coal pulverizing system[J]. Proceedings of the CSEE, 2007, 27(29): 90-95. | |
12 | Lee Y H, Kim M, Chu Y H, et al. Adaptive multivariate regression modeling based on model performance assessment[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 78(1/2): 63-67. |
13 | 汤健, 柴天佑, 刘卓, 等. 基于更新样本智能识别算法的自适应集成建模[J].自动化学报, 2016, 42(7): 1040-1052. |
Tang J, Chai T Y, Liu Z, et al. Adaptive ensemble modeling approach based on updating sample intelligent identification[J]. Acta Automatica Sinica, 2016, 42(7): 1040-1052. | |
14 | 彭小奇, 孙元, 唐英. 一种软测量模型性能监测评价及其自适应校正方法[J]. 化工学报, 2012, 63(5): 1474-1483. |
Peng X Q, Sun Y, Tang Y. Performance monitoring and assessment of a soft-sensor and its adaptive correction[J]. CIESC Journal, 2012, 63(5): 1474-1483. | |
15 | Hiromasa K, Kimito F. Application of online support vector regression for soft sensors[J]. American Institute of Chemical Engineers Journal, 2014, 60(2): 600-612. |
16 | Xiong W L, Zhang W, Xu B G, et al. JITL based on MWGPR soft sensor for multi-model process with dual-updating strategy[J]. Computers & Chemical Engineering, 2016, 90(12): 260-267. |
17 | 王振雷, 唐苦, 王昕. 一种基于D-S和ARIMA的多模型软测量方法[J]. 控制与决策, 2014, 29(7): 1160-1166. |
Wang Z L, Tang K, Wang X. A Multi-model soft sensing method based on D-S and ARIMA model[J]. Control and Decision, 2014, 29(7): 1160-1166. | |
18 | 刘佳, 邵诚, 朱理. 基于迁移学习工况划分的裂解炉收率PSO-LS-SVM建模[J]. 化工学报, 2016, 67(5): 1982-1988. |
Liu J, Shao C, Zhu L. Modeling of cracking furnace yields with PSO-LS-SVM based on operating condition classification by transfer learning[J]. CIESC Journal, 2016, 67(5): 1982-1988. | |
19 | Alguwaizani A. Degeneracy on K-means clustering[J]. Electronic Notes in Discrete Mathematics, 2012, 39(1): 13-20. |
20 | 张淑美, 王福利, 谭帅, 等. 多模态过程的全自动离线模态识别方法[J]. 自动化学报, 2016, 42(1): 60-80. |
Zhang S M, Wang F L, Tan S, et al. A fully automatic offline model identification method for multi-model process[J]. Acta Automatica Sinica, 2016, 42(1): 60-80. | |
21 | Deng X, Tian X. Nonlinear process fault pattern recognition using statistics kernel PCA similarity factor[J]. Neurocomputing, 2013, 121(18): 298-308. |
22 | Dobos L, Abonyi J. On-line detection of homogeneous operation ranges by dynamic principal component analysis based time-series segmentation[J]. Chemical Engineering Science, 2012, 75(25): 96-105. |
23 | 刘元元, 杨功流, 李思宜. BP-AdaBoost模型在光纤陀螺零偏温度补偿中的应用[J]. 北京航空航天大学学报, 2014, 40(2): 235-239. |
Liu Y Y, Yang G L, Li S Y. Application of BP-AdaBoost model in temperature compensation for fiber optic gyroscope bias[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 235-239. | |
24 | Chang L Q, Bian Z F. Research and implementation of pattern recognition based on Adaboost algorithm[J]. Sensor and Transducers, 2013, 159(11): 7-12. |
25 | 孙曙光, 张强, 杜太行, 等. 基于灰色关联度的框架式断路器故障诊断方法[J]. 仪器仪表学报, 2017, 38(10): 2525-2535. |
Sun S G, Zhang Q, Du T X, et al. Fault diagnosis method of frame-type circuit breaker based on grey correlation degree[J]. Chinese Journal of Scientific Instrument, 2017, 38(10): 2525-2535. | |
26 | Jin X, Wang S, Huang B, et al. Multiple model based LPV soft sensor development with irregular/missing process output measurement[J]. Control Engineering Practice, 2012, 20(2): 165-172. |
27 | 王振雷, 陈登乾, 王昕. 基于多模型切换策略的精馏塔最优控制[J]. 清华大学学报(自然科学版), 2016, 56(4): 430-436. |
Wang Z L, Chen D Q, Wang X. Optimal control of distillation columns based on a multiple model switching strategy[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(4): 430-436. | |
28 | 牛大鹏, 刘元清. 基于改进即时学习算法的湿法冶金浸出过程建模[J]. 化工学报, 2017, 68(7): 2873-2879. |
Niu D P, Liu Y Q. Modeling hydrometallurgical leaching process based on improved just-in-time learning algorithm [J]. CIESC Journal, 2017, 68(7): 2873-2879. | |
29 | 罗英俊, 万仁溥. 采油技术手册[M]. 3版. 北京: 石油工业出版社, 2007: 75-77. |
Luo Y J, Wan R P. Handbook of Petroleum Production Technology[M]. 3rd ed. Beijing: Petroleum Industry Press, 2007: 75-77. | |
30 | 李翔宇, 高宪文, 侯延彬. 基于示功图的抽油井动液面软测量机理建模[J]. 控制工程, 2018, 25(3): 464-471. |
Li X Y, Gao X W, Hou Y B. Soft-sensor mechanism modeling for dynamic fluid level of beam pumping systems based on dynamometer card[J]. Control Engineering of China, 2018, 25(3): 464-471. |
[1] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[2] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[3] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[4] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[5] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[6] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[7] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[8] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[9] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
[10] | Jing YANG, Zhenkang LIN, Jun TANG, Cheng FAN, Kening SUN. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems [J]. CIESC Journal, 2022, 73(8): 3394-3405. |
[11] | Xinjie ZHOU, Jianlin WANG, Xingcong AI, Enguang SUI, Rutong WANG. IDPC-RVM based online prediction of quality variables for multimode batch processes [J]. CIESC Journal, 2022, 73(7): 3120-3130. |
[12] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[13] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[14] | Zirui WU, Rui SUN, Lingfeng SHI, Hua TIAN, Xuan WANG, Gequn SHU. A comparative and predictive study of the mixing rules for the vapor-liquid equilibria of CO2-based mixtures [J]. CIESC Journal, 2022, 73(4): 1483-1492. |
[15] | Jiahui REN, Yu LIU, Chao LIU, Lang LIU, Ying LI. Critical temperature prediction of working fluids using molecular fingerprints and topological indices [J]. CIESC Journal, 2022, 73(4): 1493-1500. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||