1 |
李颍川. 采油工程 [M]. 2版. 北京: 石油工业出版社, 2009: 108-114.
|
|
Li Y C. Petroleum Engineering [M]. 2nded. Beijing: Petroleum Industry Press, 2009: 108-114.
|
2 |
王通, 高宪文, 刘文芳. 自适应软测量方法在动液面预测中的研究与应用[J]. 化工学报, 2014, 65(12): 4898-4904.
|
|
Wang T, Gao X W, Liu W F. Adaptive soft sensor method and application in determination of dynamic fluid levels[J]. CIESC Journal, 2014, 65(12): 4898-4904.
|
3 |
Li X Y, Gao X W, Cui Y B, et al. Dynamic liquid level modeling of sucker-rod pumping systems based on Gaussian process regression[C]//Wang H Y, Yuen S Y, Wang L P, et al. 2013 Ninth International Conference on Natural Computation(ICNC). Shenyang, China: IEEE, 2013: 917-922.
|
4 |
李翔宇, 高宪文, 李琨, 等. 基于多源信息特征融合的抽油井动液面集成软测量建模[J]. 化工学报, 2016, 67(6): 2469-2479.
|
|
Li X Y, Gao X W, Li K, et al. Ensemble soft sensor modeling for dynamic liquid level of oil well based on multi-source information feature fusion[J]. CIESC Journal, 2016, 67(6): 2469-2479.
|
5 |
李琨, 韩莹, 黄海礁. 基于IBH-LSSVM的混沌时间序列预测及其在抽油井动液面短期预测中的应用[J]. 信息与控制, 2016, 45(2): 241-247+256.
|
|
Li K, Han Y, Huang H J. Chaotic time series prediction based on IBH-LSSVM and its application to short-term prediction of dynamic fluid level in oil wells[J]. Information and Control, 2016, 45(2): 241-247+256.
|
6 |
王通, 高宪文, 刘文芳. 基于改进即时学习算法的动液面软测量建模[J]. 东北大学学报(自然科学版), 2015, 36(7): 918-922.
|
|
Wang T, Gao X W, Liu W F. Soft sensor for determination of dynamic fluid levels based on enhanced just-in-time learning algorithm[J]. Journal of Northeastern University( Natural Science), 2015, 36(7): 918-922.
|
7 |
汪世杰, 王振雷, 王昕. 基于JIT-MOSVR的软测量方法及应用[J]. 化工学报, 2017, 68(3): 947-955.
|
|
Wang S J, Wang Z L, Wang X. Soft-sensor based on JIT-MOSVR and its application[J]. CIESC Journal, 2017, 68(3): 947-955.
|
8 |
王通, 段泽文, 李琨. 基于改进AdaBoost的油井动液面自适应集成建模[J]. 电子测量与仪器学报, 2017, 31(8): 1342-1348.
|
|
Wang T, Duan Z W, Li K. Adaptive ensemble modeling for dynamic liquid level of oil well based on improved AdaBoost method[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(8): 1342-1348.
|
9 |
熊伟丽, 李妍君, 姚乐, 等. 一种动态校正的AGMM-GPR多模型软测量建模方法[J]. 大连理工大学学报, 2016, 56(1): 77-85.
|
|
Xiong W L, Li Y J, Yao L, et al. A dynamically corrected AGMM-GPR multi-model soft sensor modeling method[J]. Journal of Dalian University of Technology, 2016, 56(1): 77-85.
|
10 |
郭晨龙, 仇振安, 孙瑞彬. 基于增量学习的合成孔径雷达目标识别算法[J]. 电光与控制, 2019, 26(1): 31-33.
|
|
Guo C L, Qiu Z A, Sun R B. Synthetic aperture radar target recognition based on incremental learning algorithm[J]. Electronics Optics & Control, 2019, 26(1): 31-33.
|
11 |
苏志刚, 王培红, 于向军, 等. 中储式制粉系统出力在线监测软测量建模[J]. 中国电机工程学报, 2007, 27(29): 90-95.
|
|
Su Z G, Wang P H, Yu X J, et al. Soft sensor modeling for on-line monitoring the capacity of coal pulverizing system[J]. Proceedings of the CSEE, 2007, 27(29): 90-95.
|
12 |
Lee Y H, Kim M, Chu Y H, et al. Adaptive multivariate regression modeling based on model performance assessment[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 78(1/2): 63-67.
|
13 |
汤健, 柴天佑, 刘卓, 等. 基于更新样本智能识别算法的自适应集成建模[J].自动化学报, 2016, 42(7): 1040-1052.
|
|
Tang J, Chai T Y, Liu Z, et al. Adaptive ensemble modeling approach based on updating sample intelligent identification[J]. Acta Automatica Sinica, 2016, 42(7): 1040-1052.
|
14 |
彭小奇, 孙元, 唐英. 一种软测量模型性能监测评价及其自适应校正方法[J]. 化工学报, 2012, 63(5): 1474-1483.
|
|
Peng X Q, Sun Y, Tang Y. Performance monitoring and assessment of a soft-sensor and its adaptive correction[J]. CIESC Journal, 2012, 63(5): 1474-1483.
|
15 |
Hiromasa K, Kimito F. Application of online support vector regression for soft sensors[J]. American Institute of Chemical Engineers Journal, 2014, 60(2): 600-612.
|
16 |
Xiong W L, Zhang W, Xu B G, et al. JITL based on MWGPR soft sensor for multi-model process with dual-updating strategy[J]. Computers & Chemical Engineering, 2016, 90(12): 260-267.
|
17 |
王振雷, 唐苦, 王昕. 一种基于D-S和ARIMA的多模型软测量方法[J]. 控制与决策, 2014, 29(7): 1160-1166.
|
|
Wang Z L, Tang K, Wang X. A Multi-model soft sensing method based on D-S and ARIMA model[J]. Control and Decision, 2014, 29(7): 1160-1166.
|
18 |
刘佳, 邵诚, 朱理. 基于迁移学习工况划分的裂解炉收率PSO-LS-SVM建模[J]. 化工学报, 2016, 67(5): 1982-1988.
|
|
Liu J, Shao C, Zhu L. Modeling of cracking furnace yields with PSO-LS-SVM based on operating condition classification by transfer learning[J]. CIESC Journal, 2016, 67(5): 1982-1988.
|
19 |
Alguwaizani A. Degeneracy on K-means clustering[J]. Electronic Notes in Discrete Mathematics, 2012, 39(1): 13-20.
|
20 |
张淑美, 王福利, 谭帅, 等. 多模态过程的全自动离线模态识别方法[J]. 自动化学报, 2016, 42(1): 60-80.
|
|
Zhang S M, Wang F L, Tan S, et al. A fully automatic offline model identification method for multi-model process[J]. Acta Automatica Sinica, 2016, 42(1): 60-80.
|
21 |
Deng X, Tian X. Nonlinear process fault pattern recognition using statistics kernel PCA similarity factor[J]. Neurocomputing, 2013, 121(18): 298-308.
|
22 |
Dobos L, Abonyi J. On-line detection of homogeneous operation ranges by dynamic principal component analysis based time-series segmentation[J]. Chemical Engineering Science, 2012, 75(25): 96-105.
|
23 |
刘元元, 杨功流, 李思宜. BP-AdaBoost模型在光纤陀螺零偏温度补偿中的应用[J]. 北京航空航天大学学报, 2014, 40(2): 235-239.
|
|
Liu Y Y, Yang G L, Li S Y. Application of BP-AdaBoost model in temperature compensation for fiber optic gyroscope bias[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 235-239.
|
24 |
Chang L Q, Bian Z F. Research and implementation of pattern recognition based on Adaboost algorithm[J]. Sensor and Transducers, 2013, 159(11): 7-12.
|
25 |
孙曙光, 张强, 杜太行, 等. 基于灰色关联度的框架式断路器故障诊断方法[J]. 仪器仪表学报, 2017, 38(10): 2525-2535.
|
|
Sun S G, Zhang Q, Du T X, et al. Fault diagnosis method of frame-type circuit breaker based on grey correlation degree[J]. Chinese Journal of Scientific Instrument, 2017, 38(10): 2525-2535.
|
26 |
Jin X, Wang S, Huang B, et al. Multiple model based LPV soft sensor development with irregular/missing process output measurement[J]. Control Engineering Practice, 2012, 20(2): 165-172.
|
27 |
王振雷, 陈登乾, 王昕. 基于多模型切换策略的精馏塔最优控制[J]. 清华大学学报(自然科学版), 2016, 56(4): 430-436.
|
|
Wang Z L, Chen D Q, Wang X. Optimal control of distillation columns based on a multiple model switching strategy[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(4): 430-436.
|
28 |
牛大鹏, 刘元清. 基于改进即时学习算法的湿法冶金浸出过程建模[J]. 化工学报, 2017, 68(7): 2873-2879.
|
|
Niu D P, Liu Y Q. Modeling hydrometallurgical leaching process based on improved just-in-time learning algorithm [J]. CIESC Journal, 2017, 68(7): 2873-2879.
|
29 |
罗英俊, 万仁溥. 采油技术手册[M]. 3版. 北京: 石油工业出版社, 2007: 75-77.
|
|
Luo Y J, Wan R P. Handbook of Petroleum Production Technology[M]. 3rd ed. Beijing: Petroleum Industry Press, 2007: 75-77.
|
30 |
李翔宇, 高宪文, 侯延彬. 基于示功图的抽油井动液面软测量机理建模[J]. 控制工程, 2018, 25(3): 464-471.
|
|
Li X Y, Gao X W, Hou Y B. Soft-sensor mechanism modeling for dynamic fluid level of beam pumping systems based on dynamometer card[J]. Control Engineering of China, 2018, 25(3): 464-471.
|